学年

教科

質問の種類

数学 高校生

この赤枠のところの、両辺に16をかけるのは何故ですか? 教えて欲しいです!

[大阪産大〕 基本 113 CHART & SOLUTION 三角比の計算 かくれた条件 sin20+cos'0=1 を利用 かくれた条件 sin'0+cos20=1 tan の値は sino, cose の値がわかると求められる。 そこで を利用して, sino, cose についての連立方程式 4cos0+2sin0=√2, sin20+cos20=1 を解く。 → cose を消去し, sin0の2次方程式を導く。 解答 4cos0+2sin0=√2 を変形して 4cos0=√2-2sin sin20+cos20=1の両辺に 16 を掛けて 16sin20+16cos20=16 ①を②に代入して 16sin20+(√2-2sin0)²=16 10sin20-2√2 sin0-7=0 4cos0 +2sin=√2 4章 (2) を条件式とみて、条件式 は文字を減らす方針で COS を消去する。 13 三角比の拡張 整理して さ ここで, sin0=t とおくと 10t2-2√2t-7=0 これを解いて t=- √2 ± 6√2 ( (*) 10 よって t=-1 √2 7√2 2' 10 0° <0 <180°であるから 0<t≤1 これを満たすのは 7/2 t= 10 すなわち sin0= 7√2 10 ①から 4 cos 0=√2-2-- 7/2 2√2 10 5 ゆえに cos 0=√2 10 sine 7/2 √2 したがって tan 0=- =-7 Cos 10 10 (*) 2次方程式 ax2+26'x+c=0 の解は x=- - b' ±√b^2-ac a int sin 0, cos0 どちらを 消去? sin を消去して coseに ついて解くと, 0°<0 <180° から cos = √2 √2 2' の2 10 つが得られるが, √2 cos 0=- のときは 2 sin0 <0となり適さない。 この検討を見逃すこともあ るので, cose を消去して, 符号が一定 (sin0 > 0) の sin を残す方が, 解の吟味 の手間が省ける。 PRACTICE 1160 0°≦0≦180°の 0 に対し,関係式 cose-sino=1/23 が成り立つとき,tanøの値を求 めよ。

解決済み 回答数: 1
数学 高校生

数学 一枚目が問題と解答で二枚目が自分の考えなのですが、解答は微分で考えてて自分は判別式で考えて答えは同じなのですが、いいのでしょうか?

要 例題 176 2 曲線が接する条件 「共 00000 2つの放物線y=x2 と y=(x-α)2 +2 がある1点で接するとき、定数α の値を求めよ。 CHART & SOLUTION [類 慶応大] 基本174 重要 177 2曲線y=f(x), y=g(x)がx=p の点で接する条件 f(b)=g(カ)かつf'(b)=g'(p) 「2曲線が接する」 とは, 1 点を共有し、かつ共有点における接線 が一致すること(この共有点を2曲線の接点という)。 接点のx座標をとおいて 接点を共有する ⇒f(b)=g(b) 接線の傾きが一致するf'(b)=g' (b) を満たすαの値を求めればよい。 解答 f(x)=x2, g(x)=(x-a)2 +2 とすると f'(x)=2x, g'(x)=-2x+2a 2曲線が1点で接するとき, その接点のx座標をとすると f(p)=g(カ) かつ f'(b)=g'(p) y=f(x)/ y=g(x) p x g(x)=(x-a)2+2 =-x2+2ax-a2+2 f(p)=g(p) が成り立つ。 接点のy座標が一致 よって2=(p-a)2+2 ① *S=V f'(p)=g'(p) Ch 2p=-2p+2a ② 接線の傾きが一致 ②から a=2p ③ 意味する これを①に代入してp=-(p-2p)+2 ゆえに P2=1 ③から,αの値はのと為 p=1のとき -2) これを解いてえにか=±10 α=-2, p=1 のとき a=2 式は a=-2 ly=f(x) 2=2+2から inf. 接点の座標は 275 xa=-2 のとき (-1, 1) y=f(x)+α=2 のとき (1,1) 接線の方程式は 左=2のとき y=-2x-12 x +a=2のとき -10 x の。 01 DS 方 y=g(x) y=g(x) 上の数 以上の 関数 方針 となり、方針図が開範囲が広いことが BACTICE 1769 .0=v - 1,0=D y=2x-1 24010

解決済み 回答数: 1