学年

教科

質問の種類

数学 高校生

問2のq’の式の分母に2かけてるのはどうしてですか

この日, もつことになる。 がαより引き継がれやすいと, 世代を重ねるごとに変動をしながら, Aの遺伝子頻 度が大きくなる傾向になると考えられる。 153 問1 BB の個体: 36% Bbの個体: 48% bbの個体: 16% 問2 0.29 問3 41個体 Key Point 自然選択が働くと、特定の遺伝子型の個体が取り除かれ,ハーディー・ワインベルグの法 則は成り立たない。 解説 問1 遺伝子Bの遺伝子頻度をか. 遺伝子の頻度をg (p+g=1) とすると,この集団に おける遺伝子型の頻度は次の式で求められる。な (pB+qb)²= p²BB+2pqBb+q²bb とは いる。 よって, 遺伝子型 BB の個体の割合は2=0.62=0.36, 遺伝子型 Bb の個体の割合は2pg=2×0.6×0.4=0.48, 遺伝子型 66 の個体の割合は4=0.4=0.16 となる。 問2bbの個体がすべて取り除かれた後の, 対立遺伝子の遺伝子頻度を′とすると. BBの個体の割合が 0.36, Bb の個体の割合が 0.48 であったので(sp+Mo 0.48 g′'= (0.36 +0.48) ×2 0.48 0.84×2 =0.285≒0.29 となる。 変化後の遺伝子頻度で自由交配が行われれば, ハーディー・ワインベルグの法則から次 世代における遺伝子頻度は変わらないので,bの遺伝子頻度は0.29である。 問3 対立遺伝子の遺伝子頻度が0.29 なので, bb が取り除かれた後の対立遺伝子Bの 遺伝子頻度かは、 al p'=1-0.29=0.71 st Bb の個体の割合は2pg′=2×0.71×0.29=0.4118 ≒ 0.41 総個体数が100個体であれば,B6の個体数は100×0.41=41)

回答募集中 回答数: 0
数学 高校生

なぜ4acの符号がプラスではなくマイナスなのでしょうか?

解の公式 平方完成という, 2次方程式を解く万能の手法を手に入れたので,どんな2 次方程式でも(「実数解がない」ということも含めて)解くことができるように なりました.ところが,同じような作業を繰り返しているうちに,「もっとこ の作業を効率よくできないか」と考えるようになるのは自然でしょう. 2次方程式は一般的に 第1章 ax2+bx+c=0 (a≠0) という形をしていますから、先ほどの作業をこの文字のまま行えば,解を a, b, cという3つの係数だけを用いて表すことができるはずです. 少し煩雑な 作業ですが,いったんその式を作ってしまえば,今後同じ事を繰り返さずに一 気に答えを出すことができるのですから、やってみる価値は大いにありそうで す. 根気のいる式変形ですが,実際に鉛筆を持って一行ずつ式を書きながら追 いかけてみてください. まずは平方完成です. ax2+ a (x²+1)+c b として x+c=0 x2の係数αでくくる 2 b 62 + lah Ad² +c=0 平方完成の基本の変形 2 2 x+ +c=0 式は複雑ですが,以前の項で説明した 「平方完成の手続き」を踏んでいるだ けです. 次に,これを「最も基本的な2次方程式」 の型にもっていきます。 b a(2+)-6²-4ac0 4a=0j COM

未解決 回答数: 2