学年

教科

質問の種類

数学 高校生

文系の数学実戦力向上編69(2)が、解説を読んでもわからないです。年利、元利の意味なども教えていただきたいです。よろしくおねがいします。

138 数列を中心にして 69 等比数列(複利計算) 1.03=2.09 とする. 毎年1回α 万円を年利率3%で24回積み立てたとき, 24年後の利息 を含めた積み立て総額は 4万円である. (2) 100万円を年利3%の複利で年のはじめに借り、その年から元利を毎 円ずつ返済し、25回で完済するものとする. x 円である。 ただし、 答えは千円未満を切り上げたものを答えよ. (1) =1.03 とする. 2.09 である. 1年目の最初に預けたa万円(1回目の積み立て金)は、1年目の末に3%の利 息がついて 1.03 万円,すなわち α7 万円になっている。このα万円は2年目の末 に3%の利息がついて or万円になる。このようにして、1年目の最初に預け た。 万円は24年目の末に α万円になる.同様に、 2年目の最初に預けた万円(2回目の積み立て金) は ar²23 万円, 3年目の最初に預けた 24年目の最初に預けた万円(24回目の積み立て金) は αr 万円 となる。したがって, 24年後の利息を含めた積み立て総額は、 ar(2-1) ar+ar+ar+ +ar=" r-1 X As-1-²-1=₁ A₂- [4] これより、数列{A 数列であり、初項はA.- X は α7万円, 万円(3回目の積み立て金) 1.06 106 0.03 3 (2回目の返済をした後の元利残高を A. とする. A = 100×10' である. 回目と1回目の返済後の状態に注目すると、 Ap=rlax が成り立つ。これを変形すると. r-1 a(²5-r). r-1 X a(2.09-1.03) 1.03-1 a= は公比rの等比 ( 岡山商科大 ) であるから、 a an+1=pan+q (p=0.1) の形の漸化式は, α=pa+g を満たすαを用いて、 a+α=plan-α) の形に変形する. 本間のαは、 a=ra-xより, (r-l)a=x a= X r-l An-7-²-1-(40-2²1) Ap T x A₁ = (40-72₁ An 1 25の場合を考えると, A250 Ax=40-7²1) ²+²1 25+. r-1 r-1 0=100×10^- x 0.03 ×2.09+ 0=(3×10^-x) ×2.09+x であり, Ap=100×10', A2=0, 2.09 であるからなので、1,100万 Aは返済後の段 高であり、完済してい T. As=0 11 としているから、公比をかける回数に 注意する。 つまり、 ではない! 文系 数学の必勝ポイント 数列を中心にして X 0.03 1.09x=6.27×10^ ...x = 5.7522 ×10^ したがって、千円未満を切り上げると、求めるべき金額xは、 x=58000円 解説講義 積み立ての問題、借金の返済の問題は、等比数列の実生活における応用例の1つとして出 題される。 出題数は決して多くないのであるが、理系よりも文系での出題が目立つので本書 で扱うこととした. (1) は, 毎年、一定金額を積み立てていく問題である。 1回目の4万円の入金を2001年1 月1日に行ったとすると、このα万円には2001年12月31日に利息がついて × 1.03万円 になる。 このax 1.03 万円には 2002年12月31日に2回目の利息がついて × 1.03²万円 になる。 このようにして, 1回目に入金した。 万円には2024年12月31日に24回目の利息 がついて。 × 1.03 万円になる. (これが 「複利」と言われるものである) 2002年1月1日に2回目のα万円の入金を行うが、この万円は2024年12月31日に23 回目の利息がついて a × 1.03万円になる. そして、2024年1月1日に24回目の万円の 入金を行うが、このα万円は2024年12月31日に1回だけ利息がついてa×1.03万円にな る。「最後の万円に利息がつかない」と誤解しないようにしよう。 (もし利息がつかないと。 預金したのに銀行が利息を支払っていないということになる) 結局2024年12月31日には、1回目に入金した。 万円はa×1.03 万円に、2回目に入 金した。 万円は×1.032 万円に, そして24回目に入金した。 万円はa×1.03 万円になって いるから,これらの合計が24年後の積み立て総額である。 (2)は複雑である。借り入れた100万円に利息がついて借金の残高が増える同時に、支払い によって借金の残高は減る。 そこで、1年目からの残高の変化を考えると混乱してしまいそ うなので、n回目とn+1回目の返済後の残高の関係に注目して漸化式を立てて考えている。 積み立ての問題 ① 利息がつく回数に注意して、 等比数列の和で総額を求める ② 借金の返済では漸化式も有効である 139

回答募集中 回答数: 0
数学 高校生

高認の問題です。③はなぜ「〜できますか?」で「shall i〜?」なんですか?調べてもわからなかったので教えてください。

を答え (電話での会話) (平成26年11月問題2) こ A: Hello, This is Ted Brennan. Can I speak to Mr. Nelson? B: I'm sorry. He'll be out of the office until three o'clock. A: Well, [ ] B: Hold on, please. I'll get something to write with. ① do you know when he'll come back? ② will you call him back later? 3 shall I talk to him soon? ④ can I leave amessage? Hold on (電話機を切らずに)そのままお待ち下さい。 / write with (A)~で書く、(A)にはベ か万年筆か鉛筆が入る。Something to write with 何か (それで) 書くもの / call back (電話で)返 の電話をかける。 /message [ メッセージ] 伝言、 メッセージ でんごん A:もしもし、こちらはテッド・ブレナンですが。ネルソンさんいらっしゃいますか 訳 : 私はネルソンさんとお話できますか) ? B : あいにくです。 彼は3時まで会社を出ております。 A : それじゃ [] B:電話を切らないで下さい。 何か書くもの (ペンか鉛筆) を取ってきますので。 ① いつ戻ってらっしゃるかご存知ですか? ぞんじ ② ではネルソンさんに電話を下さるようにお伝えください。 ③ もうすぐ彼と話ができますか? ④ それでは(彼への)伝言 (でんごん、メッセージ)を残しておくことができますか? 正解は④、 “leave” には 「残す」 と「(町、国から) 離れる」 の二つの意味がある。 (A++h M

回答募集中 回答数: 0