学年

教科

質問の種類

数学 高校生

〰️引いてるところが理解できません!!! (問題の「カ」のところです) どのように考えたらいいのでしょうか?

練習問題 107 母平均の仮説検定 ある工場で作られたジュースの容量は1800.0mL と表示されている。このジュース400本を無作為に抽出しジュースの容量を 計測したところ、平均は1796.7mL,標準偏差は 26.4mLであった。 太郎さんと花子さんは,この調査の結果からジュースの 容量は表示通りではないといえるかどうかを有意水準5%で両側検定しようとしている。 花子:この工場で作られたジュースの容量を X (mL), Xの平均をM (mL) とし,アをM=1800.0 である とします。 太郎:400は十分大きいから、標本の大きさ400の標本平均 X は,平均イ,標準偏差 ウの正規分布に近 似的に従います。 よって, Z= 花子:M = 1800.0 という仮説について両側検定するから,X≦1796.7 または X ≧ カ とおくと,Zは標準正規分布 N (0, 1)に従うと見なせます。 となる確率の値を 求めます。 正規分布表を利用すると、かの値は 0. キクケコとなり,サ 0.05 が成り立つので、 アはシ。よって、この標本調査の結果からジュースの容量はスコ 太郎:その通りです。また,棄却域を考えることによって検定することもできます。 正規分布表から P(-セソタ Z≦ センタ = 0.95であるから,有意水準 5% の棄却域は Zsセソタ セソタ Zとなります。 X = 1796.7 のときチツテトとなり、この値は棄却域に ナから, ア は よって,この標本調査の結果からジュースの容量は スという結論を得ることができます。 の解答群 ⑩ 帰無仮説 ① 対立仮説 |の解答群(同じものを繰り返し選んでもよい。) sera (0 0.066 ① 0.05 ⑤ 1773.6 ⑥ 1796.7 (2) 1.32 ⑦ 1800.0 6.60 ④ 26.4 ⑧ 1803.3 1826.4 サ の解答群 heen -20 18T2.0= (7.0) as ① < |の解答群 (0) ⑩ 棄却される ① 棄却されない。 スの解答群 FLO () 30 TO.0-(m ⑩表示通りではないといえる の解答群 ⑩ 含まれる 11.0 (0) S (1) 0.0 = (2X)9(n) 分散 ① 表示通りではないとはいえない ①含まれない 0000 とせよ 代 (n)=(2120)

回答募集中 回答数: 0
数学 高校生

(3)を解いてみました。私の解答でmの存在条件を考える時、 2m=Xと-8m=Y の両方の条件を使えばいいのか、 またはどちらかを使えばいいのか分かりませんでした。

ヨチェク ①8/130 to 212 12 軌跡 / パラメータを消去 座標平面上に直線1:y=mz-4mと放物線y=1がある.mは,IとCが異なる2点P, Qで交わるような値をとるとする.また, 線分 PQ の中点をMとする. (1) 1はmの値にかかわりなく、 ある定点を通る。 この点の座標を求めよ。 (2) m のとりうる値の範囲を求めよ. (3) Mの軌跡を求め, 座標平面上にそれを図示せよ。 (南山大 外国語, 法) 軌跡の素朴な求め方 動点の軌跡の素朴な求め方は,動点M(X, Y) を原動力 (本間ではm, 以下 パラメータと呼ぶ) で表して, それがどんな図形であるかをとらえる方法である。 直接読み取れること もあるが、一般的には,パラメータによらないXとYの関係式 (パラメータを消去した式) を作ること で、 軌跡の方程式を求めることになる。 なお、 実際にはXとYの関係式を作るとき、必ずしもX,Yを パラメータだけで表した式を用意する必要はない. 本間の場合 「Mが上」 に着目するのがうまい。 「軌跡」 と 「軌跡の方程式」 問題が「軌跡を求めよ」という要求なら, 軌跡の限界 (範囲: 不等式) を考慮しなければならないが,「軌跡の方程式を求めよ」 という要求ならば、その必要はなく、単に方程 式 (等式)を求めるだけでよい,というのが慣習である。 本間 (3) の場合 Mのx座標は,解と係数の関係を使う. y座標は1の式から (2) にも注意. 解答量 (1) 直線/は,y=mx-4m ①の右辺をmについて整理して,y=m(x-4) これは定点 (40) を通る. (2) y=1/2と①を連立して得られる方程式 ・① M C 1なければ主と 依存して パラメータでおし 1 r²-mx+4m=0· ・② 4 x 4 a XOB が異なる2つの実数解を持つ. 判別式をDとすると, D=m²-4m>0 m <0 または4<m (3) P,Qの座標をα βとし, M(X, Y) とおくと, X=- a+B 2) ・・・③ これから軌跡の限界が出てくる. PQの座標をm で表す必要はな い。 このようなときは具体化を 急がず、とりあえず文字でおく α, βは②の2解であるから,解と係数の関係により, a+β=4m よって、X=2m であり,Mは①上にあるから,Y=mX-4m⑤⑤ではなく、 =1/2で、⑤に代入しY=1/2x2-2x ④よりm= ③ ④ により,X < 0 または 8 < X X,Yをx, y に書き換え, 求める M の軌跡は 1 y= x²- ーー2x (x<0または8<x) であり, 右図太線である (○を除く)。 16 y=x²-2xy=- 04 8 x 1/2 B2 4 (a+8)2-2aß JA8 =2m²-4m と ④ から Y を X で表しても大し たことはないが (本間の場合), ⑤ (直線上にあること)に着目す るのがうまい人、 12 演習題(解答は p.104) 円 (x-2)2+y2=1と直線y=mz が異なる2点P Qで交っているとき, (1) m の値の範囲を求めよ. (2) 線分 PQ の中点Mが描く軌跡を求め, それを図示せよ (軌跡に端点がある場合は 今の座標を明示せよ ). (群馬大・理工, 情/改題) Mが直線上にあること をうまく使う なお、図 形的に解くこともでき る. 91

回答募集中 回答数: 0
数学 高校生

2枚目にある∠CYAが120°になる理由が分かりません 教えてください (1枚目に条件があり、3枚目には表があります)

第3章 形 6発展 15分 以下の問題を解答するにあたっては, 太郎さんと花子さんは、ある広い市内の宝探しゲームに参加することにした。この宝 ゲームは駅をスタート地点とし、ヒントに指定された各ポイントをめぐり、宝が隠された イントを見つけ出すゲームである。 スタート地点の駅で最初のヒント1が配られた。 a ヒント1 図書館体育館。駅の3地点から等距離にある地点Xに (1)まず。二人は、市内地図を広げて地点Xの位置を考えることにした。 体育館 213km 66 「図書館 AZ \13km 56 (2) 地点 Xに着いた二人は、ヒント2を見つけた。 ヒント2 次の条件を満たす地点Yにヒント3がある。 ・地点Y と駅の距離は7km である。 ・地点X と地点Y の距離と 地点 X と駅の距離は等しい。 ・地点Y と図書館の距離よりも、地点Y と体育館の距離の方が長い。 +静電 ヒント2がある。 太郎: 等しい距離だから,円を考えればよいのかな。 花子:円だったら,どんな円を考えればよいのだろう。 地点Yは 上にあり、 ク Bo の交点のうち、図書館からの距離が 上にあることから. ケ 方の点が地点Yである。 キ と ク の二つ ク の解答群 (解答の順序は問わない。) キ 13km 駅 Omen 〇〇 図書館,体育館, 駅のある3点を頂点とする三角形の外接円 図書館,体育館, 地点Xのある3点を頂点とする三角形の外接円 ②駅のある地点を中心とし、駅から地点Xまでの距離を半径とする円 × ③ 図書館のある地点を中心とする半径 13 2 kmの円 ④ 地点 X を中心とする半径 7kmの円× ⑤駅を中心とする半径 7kmの円 3 図形と計量 CV 花子 : 図書館のある地点をA. 体育館のある地点をB, 駅のある地点をCとして考 えることにしよう。 ケ の解答群 太郎: 地点 XはA, B, Cの3点から等距離にあるから, ABCの外接円の中心 が地点Xだね。 ⑩ 短い ① 長い 花子 : A と B B と C,CとAの距離は等しく13kmだから、駅から地点Xまで の距離がわかるね。 ウ km先が地点Y である。 よって、駅のある地点をCとするとき, 地点 Xから ∠CXY= アイ V コ となる方向 エ 駅から地点Xまでの距離は アイ ウ I km先が地点 X である。 駅のある地点をCとするとき、駅から∠BCX=オカとなる方向の kmであるから、体育館のある地点をB アイウ コ については,最も近いものを、次の①~⑤のうちから一つ選べ。 I 30 34 ② 45 156 ④ 60 70

回答募集中 回答数: 0
数学 高校生

ガウスを不等式の中に入れてるのってどういう意味ですか?

基本 例題 23 数列の極限 (6) ・・・ はさみうちの原理 3 △ 45 ①①① (1) 実数x に対して[x]をm≦x< m+1 を満たす整数とする。 このとき, [102] lim 102m を求めよ。 (2) 数列{an) の第n項 α7 はn桁の正の整数とする。 このとき, 極限 [山梨大) logio an lim を求めよ。 72 [広島市大〕 基本21 指針 この問題も、極限が直接求めにくいので、はさみうちの原理を利用する。 (1) [x] をはさむ形を作る。 x]はガウス記号であり (「チャート式基礎からの数学 I+A」 p.121 参照) [x]≦x< [x]+1 が成り立つ。 これから (2) α は n桁の正の整数 10" 'Man<10" (数学ⅡI) (1)任意自然数nに対して, [102] 10°"z<[10%"z]+1 102-1< [102]≦102 1 [102] < 10²n 102n x-1<[x]≦x <[x]≦x<[x]+1 2章 ③数列の極限 2限 [102] をはさむ形。 から 解答 よって 1 limπ 201 102πであるから [102] lim π はさみうちの原理。 102n 12-00 (2) α は n桁の正の整数であるから 各辺の常用対数をとると 10"-1≦an<10" n-1≦10g10an<n 10g1010=n よって 1 log10 an <1 n n lim (1-1) =1であるから lim log10 an 1 はさみうちの原理。 12-00 n 7→80 注注意 はさみうちの原理を誤って使用した記述例 例えば、前ページの例題22の解答で, A 以降を次のように書くと正しくない答案となる。 0<<6 Aから n² 0<lim- <lim → 2 6 n =0 よって lim n2 =0 2 [説明] はさみうちの原理は 818 an≦cn≦bn のとき lima= limb = αならば limc=α →80 n00 これは, 「acn≦bn が成り立つとき, 極限lima, limb が存在し, それらがαで一致する ならば,{c}についても極限limc が存在し, それはαに一致する」という意味である。 72700 72100 において, 存在がまだ確認できていない極限lim を有限な値として存 上の答案では, 在するように書いてしまっているところが正しくない。 正しくは、 前ページの解答のA, B のような流れで書く必要がある。 n² 11-00271 練習 実数 α に対してαを超えない最大の整数を [α] と書く。 [ ]をガウス記号という。 23 (1) 自然数の桁数kをガウス記号を用いて表すと, k =[[ ] である。 (2)自然数nに対して3”の桁数を km で表すと, lim- kn 12-00 n "である。 [慶応大]

回答募集中 回答数: 0