学年

教科

質問の種類

数学 高校生

3番の式の作り方わかんないです

基礎問 232 第8章 ベクトル 148 角の2等分ベクトルの扱い(II) AB=5, BC=7, CA =3 をみたす △ABCについて,次の問い に答えよ. (1) ∠Aの2等分線と辺BC の交点をDとするとき,ADをAB. AC で表せ. (2) ∠Bの2等分線と線分ADの交点をⅠとするとき, AI: ID を求めよ. (3) AI を AB, ACで表せ. (4) 始点を0とし, I を OA, OB, OC で表せ. (3) (4) 8.3AB+5AC Ai-15 AD=15 15 85AC-3AB+5AC Ai=oi-OA,AB=OB-OA, AC-OC-OA 15AI=3AB+5AC にこれらを代入して . 15(OI-OA) = 3 (OB-OA)+5(OC-OA) Oi= 70A +30B+50℃ 15 始点を変える公式) AB=□B-□A (□は新しい始点) 参考 233 PL (3)の式を利用する (4)の結論を見ると, OA, OB, OC の係数が、3辺の長さにな 相手は っています. これは偶然ではなく, 一般に, 次の式が成りた つことが知られています. (マーク式では有効な知識です) 右図のような △ABCにおいて, 内心とすると C b 01=40A+6OB+coc B' a. IC a+b+c 精講 (1) 角の2等分ベクトルの扱い方の2つ目です. 右図のとき 次の性質を利用します。 AB: AC=BD:DC (I・A53 三角形の内角の2等分線は1点で交わり,その点は, 内心と呼ばれます. (IA52 0 BD C 証明は演習問題 148です. 誘導にしたがってがんばってみましょう。 これは「始点を変えよ」 ということですが,この結果が問題なのです. ゥ このようにきれいな関係式がでてきます。 たまには, 数学の美しさを鑑賞す

回答募集中 回答数: 0
数学 高校生

この問題の(2 でなぜ選択肢2が成り立つのか分かりません。照明があるのですがらあまりによって何がわかり、どうして矛盾するのでしょうか、、?、 解説お願いします🙏

例題太郎さんと花子さんは次の証明問題について話している。 二人の会話を読んで下の 問いに答えよ。 問題 直角三角形の斜辺の長さが自然数c, その他の2辺の長さが自然数 a, b であるとき, a, b, c のうち少なくとも1つは5の倍数であることを証明せよ。 花子:直角三角形の3辺の長さといえば,三平方の定理だね。 斜辺の長さが c, そ A の他の2辺の長さがそれぞれα, bだから問題は「自然数 α,b,c が a2+b2=c2 を満たすとき, a, b, c のうち少なくとも1つは5の倍数である」 という性質を証明することだね。 C b B a 太郎:こんな性質があったなんて知らなかったよ。本当に成り立つのかな。 花子: 例えば, a=3, b=4,c=5のときは,cが5の倍数になっているね。 太郎: 他にアのときもこの性質が成り立つよ! どうやらこの性質は成り立つようだね。 じゃ あ、どうやって証明すればいいだろう。 5の倍数であることを証明するから, mを自然数と してα=5mとおいて考えればいいかな。 花子: それだと,その後どうすればいいかわからないよ。こういうときは,授業で習った 「背理法」 を使えばいいんじゃない? 太郎 : 「命題が成り立たないと仮定して, 矛盾を導く」という証明方法だったから,「 A a,b, chi B を満たし,C」と仮定すればいいね。 (1) アに当てはまる最も適当なものを,次の①~③のうちから一つ選べ。 ⑩a=1,6=2,c=√5 ① a=1,6=2,c=3 ② a=8,615,c=17 ③ a=13,6=12,c=5 (2) A B C に当てはまる組み合わせとして最も適当なものを、次の①~③のうちか ら一つ選べ。 イ A B 2+b2=c ⑩ 自然数 ① 自然数 2 ② 自然数 C 自然数 ' +62≠c2 ③無理数 a² +b² c² ²+62=c a2+b2=c a, b, c のうち少なくとも1つは5の倍数でない a, b, c のうち少なくとも1つは5の倍数である a, b, c のいずれも5の倍数でない a, b, c のうち少なくとも1つは5の倍数である 数学- 10

回答募集中 回答数: 0