学年

教科

質問の種類

数学 高校生

数学A図形の問題です。 青い資格で囲んだ問題の赤線部の 理由を教えてください。

br 日本の 571 三角) △ABCにおいて、辺BCの中点をMとし, AMB, AMCの二等分線が辺AB, AC と交わる点をそれぞれD とする。このとき, DE // BC であることを証明せよ。 p.447 基本事項, p.448 基本事項 2 指針 平行であることの証明に,平行線と線分の比の性質を利用する。 p.447 基本事項(2) の から DE/BC AD:DBAE: EC AMAB において, MD は ∠AMB の 解答 二等分線であるから したがって, p.448 基本事項定理1(内角の二等分線の定理) を用いることによ り、 を導くことを目指す。 CHART 三角形の角の二等分線と比 (線分比)=(2辺の比) AD: DBMA: MB ・・・・・・ ① AMAC において, ME は ∠AMCの 二等分線であるから AE: EC=MA:MC Mは辺BCの中点であるから MBMC よって, ② は AE: ECMA: MB ゆえに、①から AD: DB=AE: EC DE // BC B DA M V M E B E 練習 △ABCの辺AB, AC 上に, それぞれ頂点と異なる任意 71 の点D、Eをとる。 D から BEに平行に,また, Eから CD に平行に直線を引き, AC, AB との交点をそれぞれ F G とする。 このとき, GF は BCに平行であることを 証明せよ。 C D ND M (線分比) (2辺の比) (線分比) (2辺の比) したがって 図形の証明問題の取り組み方 検討 図形の証明問題では、証明したいもの (結論) から逆に考えることが多いが, 証明が苦手な 人は、問題文中の図形に関する用語や記号を で囲むなどして、方針を見つけやすくす るとよい。上の例題では 平行線と線分の比の性質。 ① ∠AMB の二等分線 ∠AMCの二等分線 → 定理1の利用 ② DE / BC → ・平行線と線分の比の性質の利用 といったことが見えてくる。 なお, 問題文に図がない場合は,まず図をかくことから始 B D 練習 △ABCにおいて, AB=5,BC-4, CA-3とし、∠Aの二 ②70 等分線と対辺BCとの交点をPとする。 また、頂点Aに おける外角の二等分線と対辺BCの延長との交点をQと する。 このとき, 線分BP, PC, CQの長さを求めよ。 金沢工大 APは∠Aの二等分線である から BP: PC AB: AC すなわち BP (4-BP)=5:3 よって 5(4-BP)=3BP 5 すなわち 5 5- 練習 △ABCの辺AB, AC 上に ②71 ゆえに BP= AQは頂点Aにおける外角の二等分線であるから BQ CQ=AB:AC (4+CQ): CQ=5:3 5CQ-3(4+CQ) AG-AF AB AC P AD AG AF AE AB AD AE AC PC=4-BP=4- また △ABE において, DF // BE であるから AD AF ① AB AE △ADCにおいて, GE // DC であるから AG AE (2) AD AC ① ② の辺々を掛けると C △ABCの辺ABのAを越え る延長上に点Dをとり,辺 AB上にAC=AE となるよ うな点Eをとる。 BQ: QC=AB:ACのとき, BQ: QC=AB AE から 3 よって B B ゆえに CQ=6 それぞれ頂点と異なる任意の点D, Eをと る。 D から BE に平行に、 また, E. から CD に平行に直線を引き, AC. AB との交点をそれぞれF, G とする。 このとき, GF は BC に平行で あることを証明せよ。 5 3 2 2 E AQ/EC Q GF // BC ←BP:PC- BP= 5+3 PC 5+ としてもよ ←BQC 練習 AB AC である△ABCの辺BC を AB:AC に外対するを見す ②72 ∠Aの外角の二等分線であることを証明せよ。 CQ== としても 数式す

解決済み 回答数: 1
数学 高校生

この問題で、延長線を使わなくてはいけない理由はなんですか?仮定で、△ABCの辺BCをAB:ACに内分するって言っているので、∠Aの二等分線⇒BP:PC=AB:ACが成り立つからAPは∠Aの二等分線である、という証明ではダメなのですか?

000 Sluts ABCの辺BC を AB : AC に内分する点をPとする。このとき, APは∠A の二等分線であることを証明せよ。 例題 72 角の二等分線の定理の逆 問題文の内容を式で表すと,次のようになる。 指針 p.448 基本事項 2 定理1(内角の二等分線の定理) の逆である。 BP: PC=AB: AC ⇒ APは∠Aの二等分線 ( ∠BAP=∠CAP) △ABCにおいて、辺BAの延長上に点D ACAD となるようにとる。 つまり, 線分の比に関する条件から, 角が等しいことを示すことになるが, 線分の比を 扱うときには,平行線を利用するとよい。 ∠Aの二等分線BP : PC=AB AC の証明 (p.448 解説)にならい, まず辺 BAのAを越える延長上に, AC=AD となるような点Dをとることから始める。 別解 ∠Aの二等分線と辺BCの交点をDとして, 2点P, D が一致することを示す。 なお、このような証明方法を同一法または一致法という。 p.453 における三角形の重心の証明でも同一法を用いている。 ゆえに SISAKOLA Camar BP:PC=AB:ACのとき, BP : PC=BA : AD から平行線と線分の比の性質 AP//DCを三角形の重心と の逆 ∠BAP=∠ADC ∠PAC=∠ACD ACAD から ∠ADC=∠ACD よって ∠BAP=∠PAC すなわち, APは∠Aの二等分線である。 別解 辺BC上の点Pが BP: PC=AB:AC B P AB:AC=BD:DC BP:PC=BD:DC DI を満たしているとする。 ∠Aの二等分線と辺BCの交点をDとすると, 内角の 二等分線の定理により TOP p.448 基本事項2 ② あ CHURCO AS IMAG ROCLAAS TÄ したがって, APは∠Aの二等分線である。 HOA B ONOTRE 平行線の同位角、錯角は それぞれ等しい。 MAS △ACD は二等辺三角形。 ①②から 6. FADLOWE よって,PとDは辺BCを同じ比に内分するから一致す 同一法 る。 DP C 451 GROMAE CÓRKA 704 が成り立つ。下の練 3章 3 1 三角形の辺の比、五心

回答募集中 回答数: 0
数学 高校生

過去問の答えを作って欲しいです🙇🏻‍♀️

数学Ⅰ・数学A 第1問,第2問,第3問は必答問題です。 第4問 第5問, 第6問は選択問題です。選択問題では, いずれか2問を選択し解答しなさい。 その2問については, 解答用紙の問題番号の後の口に 択したことを示す〇印を記入すること。 答えが分数となる場合は既約分数で答えること。 第1問 (必答問題) 次の (1) ~ (4) の間の (1) x3+27 を因数分解すると (2) x= 1 √3-√2 のとき、x2+ 第2問 (必答問題) 次の (1) ~ (4) の間の xの2次不等式x2-2x-3≦0 (1)2次不等式 ①を解くと (ア) (3) x>0,y>0, x+y=16のとき, xyの最大値を求めると ..... にあてはまる数または式を解答欄に記入しなさい。 (ア) である。 の値を求めると (4) △ABCにおいて, b=2a, B=30°のとき, sin A の値を求めると (I) (イ) ① がある。 である。 である。 にあてはまる式を解答欄に記入しなさい。 (ウ) である。 - 5 である。 (2) ①を満たすすべての実数 x に対して,常に(x+2)(x-a) <0 となるようにaの値の範囲を求め ると (イ) である。 (3) ①を満たすすべての実数x に対して、 常に (x+2)(x-α)≧0 となるようにaの値の範囲を求め ると (ウ) である。 (4) ① を満たすある実数x に対して, (x+2)(x-α) <0 となるようにaの値の範囲を求めると (エ) である。

解決済み 回答数: 1
数学 高校生

解答のOM⊥BCになる理由が分かりせん。教えてください💦

EBCに下ろした垂線を り,線分 CD が円の直径 p.406 基本事項 ① ② 円に関する定理や性質 (*) ある。) フェ 中点連結定理 コ点2つで平行と半分 DBC, ∠DACは半円の に対する円周角 問題は, △ABC が鈍角 三のときも成り立つ。 90° または ∠B=90° の 角形のときは (2) の四 できない。 利用)。 0 (TRIANO) も利用。 =∠CAHであ MAA 050 基本例題12 重心 外心垂心の関係 正三角形でない △ABCの重心G,外心O,垂心Hは一直線上にあって,重心は 外心と垂心を結ぶ線分を,外心の方から1:2に内分することを証明せよ。なお, 基本例題 71 の結果を利用してもよい。 p.406, 407 基本事項 ①1, ②, ④4 指針 証明することは,次の [1], [2] である。 [1] 3点 G, 0, Hが一直線上にある。 これを示すには,直線 OH上に点Gがあることを示せばよい。 それには, OH と中線 AM の交点を G′として, G′とGが一致することを示す。 [2] 重心 G が線分 OH を1:2に内分する,つまり OG: GH=1:2をいう。 AH // OM に注目して,平行線と線分の比の性質を利用する。 …… すなわち 練習 . 右の図において,直線 OH と △ABC の 中線 AMとの交点を G′ とする。 AH⊥BC, OM IBCより, AH// OM であるから AG' G'M=AH : OM 72 =20M:OMBI B MAD" +4BD"-2A (G) =2:1 SBD ⓘ TAM は中線であるから, G′ は△ABC の重心G と一致する。 よって,外心 0,垂心 H, 重心Gは一直線上にありA HG : OG = AG:GM=2:1> OG:GH=1:2 OPT" # C=AD'+12 検討 三角形の外心,内心、重心,垂心の間の関係 心,外心の性質から。 0. GH U18 08,201 2009 基本例題71 の結果から。 M A ①外心は三角形の3辺の中点を結ぶ三角形の垂心である (練習 72)。 円劇・阿 ②重心は3辺の中点を結ぶ三角形の重心である(練習70) 内 ③ 正三角形の外心,内心,重心,垂心は一致する (練習 71)。 したがって, 正三角形ではオイ ラー線は定義できない。 Acti (1) 検討 (この例題の直線OH) を 外心,重心,垂心が通る直線 オイラー線という。ただし 正三角形ではオイラー線は定 義できない。下の 検討 ③ 参 照。 (1) PUTO DAA △ABCの辺BC, CA, ABの中点をそれぞれL, M, N とする Oは 413 3章 10 三角形の辺の比、五心

未解決 回答数: 1