学年

教科

質問の種類

数学 高校生

赤線のところの式変形がわかりません もう一個わからないところがあってsin60°分のaってどこのことですか?

276 例題 170 正四面体の高さと体積 基本例 000 1辺の長さがαである正四面体 ABCD において, 頂点A から BCD AH を下ろす。 (1) AH の長さんをαを用いて表せ。 (2) 正四面体 ABCD の体積Vをαを用いて表せ。 (3) 点Hから △ABCに下ろした垂線の長さをαを用いて表せ 許 (1) 直線 AH は平面 BCD 上のすべての直線と垂直であるから AHIBH, AHICH, AHIDH ここで, 直角三角形 ABH に注目すると よって まずBH を求める。 AH=√AB2-BH また,BHは正三角形 BCD の外接円の半径であるから, 正弦定理を利用。 (2)(四面体の体積)=1/12 (底面積)×(高さ) HABC, HACD, HABDの体積は等しいことも利用。 (1) AABH, AACH, AADH (3) 3つの四面体 HABC いから、 (四面体 HABC =(正四面 が成り立つ。 求める垂線の長さを (四面体 HABC 1 3 また, (2) より 正 から,これらを よって x= 解答 はいずれも ∠H=90° の直角三 角形であり AB=AC=AD, AH は共通 であるから D である。 直角三角形におい 辺と他の辺がぞ 等しいならば互い 検討 重心の性質を用い 正三角形におい (1)のAH の長さ なお, 重心につ 100B H 三角形の 三角形の △ABH=△ACH=△ADH よって BH=CH=DH C ゆえに、Hは ABCD の外接円の中心であり, BH は H は BCDの 辺 CD の中点 ABCD の外接円の半径であるから, ABCD において、 (数学Aで詳しく であるから a 正弦定理により =2BH-EL sin 60° ABCD は正三角 り、1辺の長さは したがって a a よって BH= √3 a FE △ABHは直角三角形であるから, 2 √3 = の内角は60°である 2sin60° 2 例題 170 A 三平方の定理により h=AH=√AB2-BH?V a a a²- 2 √√6 a /3 3 3 B a H √3 (2) ABCD の面積をSとすると 1 S=asin 60-√3a² 4 よって、正四面体 ABCD の体積Vは 1 √√3 √6 r=/13sh=13 V= a². a= 4 3 12 √2 a であるこ につい また、 (ABCDの面積) BC BCBDsin40 いる( 練習 1辺の ③ 170 にお (1) 17 (3)

回答募集中 回答数: 0
数学 高校生

数学、図形と計量の問題です。 花子さんの方(ⅱ)の解答の5行目あたりからの意味がわかりません。どなたか解説お願いします🙇

(ii) 花子さんの求め方について考えてみよう。 △ABCの外接円の半径をR とすると AB=2RX I である。 また BH=2RX オ CH=2R × カ S= 2 BCX BC2 × であるから, BC=BH+CH より R をBC と B C を用いて表すことができる。 よって AB × BC sinB sinB sinC (2) cosBsinC + sin Bcos C である。 I の解答群 sin B ①sinC 1 1 sin B sin C 1 cos B cos C cos B cos C オ の解答群(同じものを繰り返し選んでもよい。) sin B sin C cos C cos B cos C sin Bcos C ③ cos Bsin C cos B sin B sin B sin C ⑦ sin C cos C cos B ⑧ 1 sin B sin C cos Bcosc (2)太郎さんと花子さんは,求めた式の形が異なることを疑問に思った。次の①~③のう ち ① ② の式について正しく記述しているのは キ である。 キ の解答群 ①の式のみ、△ABC が鋭角三角形でないときに面積Sを求められないことが ある。 ①②の式のみ,△ABC が鋭角三角形でないときに面積Sを求められないことが ある。 ② ① ② の式ともに, △ABC が鋭角三角形でないときに面積Sを求められない ことがある。 ①と②の式は同値なので,△ABC の形状にかかわらず面積Sを求めることが できる。 3

回答募集中 回答数: 0
数学 高校生

a=2とはわかったのですが、その後に正弦定理でBを求めたら、sinB=√3/2となり、B=60゜,120゜と出たのですが、答えでは答えは120゜の方だけです 条件(B<180−45)には当てはまっていると思うのですが、何がいけないのですか?

220 三角形の解法 (1) (1) 2辺とその間の角 (2) 3辺が条件の場合 基本 145 基本例題 146 0000 指針 △ABCにおいて,次のものを求めよ。 b=√6,c=√3-1, A=45° のとき a, B, C a=1+√3, b=2,c=√6 のとき A, B, C (1)条件は,2辺とその間の角→まず余弦定理でαを求める。 三角形の 基本 AAB 指針> (2)類注側) 次に Cから求めようとするとうまくいかない。 よって、他の角Bから求める。 (2)条件は,3辺→ 余弦定理の利用。 B, C から求めるとよい。 CHART 三角形の解法 解答 12角と1辺(外接円の半径) が条件なら 正弦定理 ②3辺 が条件なら 余弦定理 の間の角 (1)²=(√6)+(√3-1-2・√6(√3-1) cos 45° =6+(4-2√3)-(6-2√3)=4 解答 余弦定 よって [1]c CC ゆえ [2] α > 0 であるから a=2 Cから考えると C cos B= (√3-1)^2-(√6)2 2(√3-1)・2 A 16 45 15° cos C= 22+(√6)-(√3-1 √3-1 120° 21-√3) 1 == == B 4 (√3-1) 2 2 ゆえに B=120° よってC=180°(45°+120°)=15° (2) cos B= (√6)+(1+√3)2-22 2√6(1+√3) √6+√2 4 この値は, 15°75°の三角 比 (p.196 参照) である。 Aから考えると 2.2.6 ゆえ 以上 別解 = cos C= 2(1+√3)・2 √3(1+√3) √6(1+√3) よって B=45° (1+√3)2 +22-(√6)_2(1+√3) 75° 1 √√6 22+(√6)-(1+√3 A= 2 cos A= 2.2.√6 /2 [1] 45° 60° √6-√2 B 1+√3 となる。 C 4 1 ゆえに C=60° 4(1+√3 よって A=180°(45°+60°)=75° この例題のように三角形の 残りの要素を求めることを 三角形を解くということが ある。 [2 三角形の解法 検討 列題では,三角形のいくつかの要素から残りの要素を求めている。 一般に,三角形の6つの要素 (3辺a,b,c;3角 A,B,C)のうち [1] 1辺と2つの角 どれかが与えられると,その三角形の形と大きさが定まる。 [2] 2辺とその間の角 [3] AABChi 右

未解決 回答数: 1