学年

教科

質問の種類

数学 高校生

数IIの二項定理に関する問題で質問です 赤い線の部分が全く理解出来ていません。わかりやすく説明していただけると嬉しいです🙏🏻🙏🏻

21 」の考えを利用して証 5 (1) の数を,次の2通り nCkxk )。 ■Xn-1 Ck-1 通り える。 2通りがある 解答 ば、n個の要素 一選ぶと考える。 重要 例題 6 n桁の数の決定と二項定理 (1) 次の数の下位5桁を求めよ。 (ア) 101100 (イ) 99100 (2)2951900で割ったときの余りを求めよ。 [類 お茶の水大] 基本1 (1)これをまともに計算することは手計算ではほとんど不可能であり,また,それ を要求されてもいない。 そこで,次のように 二項定理を利用すると,必要とされ る下位5桁を求めることができる。 (ア) 101100=(1+100)100= (1+102 ) 100 これを二項定理により展開し、各項に含ま れる 10^(nは自然数) に着目して、下位5桁に関係のある範囲を調べる。 (イ) 99:00=(-1+100)100= (-1+102) 100 として, (1) と同様に考える。 (2)(割られる数)=(割る数)×(商)+(余り)であるから, 2951 を900で割ったと きのを M, 余りを とすると, 等式 2951= 900M+r (M は整数,0≦x<900)が成 り立つ。295=30-1)51であるから,二項定理を利用して (30-1)を900M+r の形に変形すればよい。 (1) (ア) 101100(1+100)'OO=(1+102) 100 =1+100C1×102+100C2×10^+10°×N =1+10000+495×105 + 10°×NEY (Nは自然数 この計算結果の下位5桁は,第3項 第4項を除いて も変わらない。 よって, 下位5桁は 10001 展開式の第4項以下をま とめて表した。 10"×N (N, n は自然数, n≧5) の項は下位5桁の 計算では影響がない。 1 章 3次式の展開と因数分解、二項定理 00100-( 1100)100_(_1+102) 100

解決済み 回答数: 1
数学 高校生

数学の問題です。110で最小値を求めるのに直線と点の距離の関係の公式を右のノートで使っているのですが何故か答えがあいません。答えは1/2で私は-5/4だと思いますなぜですか?

x-y 0から 求める a, b の条件は,①,② から, [b≦a+5 b 62-2a-1 b≥a+5 または と と同値である。 b≤-2a-1 よって、 求める領域は図の斜線部 分。 ただし、境界線を含む。 -5 -2_1 [inf. F f(x, y) =ax-y+b として, f(-1, 5)f(2,-1)≦0 と考えることもできる。 3章 14,67 PR ・607 M 4週間でのAの生産台数をx, Bの生産 台数をyとすると,条件から 組立 18 A 6 時間 2時間 x0,y≧0, B 3 時間 5時間 6x+3y≦18・4, 2x+5y ≦10・4 すなわち x = 0, y≧0, 2x+y≦24, 2x+5y≦40 離は この連立不等式の表す領域は右の図 の斜線部分である。 ただし, 境界線 を含む。 合計生産台数をkとすると YA PR ある工場で2種類の製品 A, B, 2人の職人MWによって生産されている。 製品Aについて ③109 は 1台当たり組立作業に6時間,調整作業に2時間が必要である。 また, 製品Bについては, 組立作業に3時間,調整作業に5時間が必要である。いずれの作業も日をまたいで継続するこ とができる。 職人Mは組立作業のみに, 職人Wは調整作業のみに従事し,かつ, これらの作業に かける時間は職人Mが1週間に18時間以内, 職人W が 1 週間に 10 時間以内と制限されている。 4週間での製品 A,Bの合計生産台数を最大にしたい。 その合計生産台数を求めよ。 W [岩手大] infx, y がいくつか の1次不等式を満たすと xyのある1次式の 値を最大または最小にす る問題を線形計画法の間 題といい, 経済の問題で も利用される。 最大16:07 (2)(46) b=6 6=-20 + 調整 -644 半径 6= 1-2151 い 2 2 k=x+y y=-x+k (10,4) これは傾きが-1, y切片がんの直線 を表す図から, 直線 ①が点 (10,4) を通るとき,kの値は最大になり k=10+4=14 O 12 ←直線①の傾きが-1 から,領域の境界線の傾 きについて 5 6 =kta -2<-1<-2 したがって,合計生産台数は最大14台である。 ← A10台 B 4台 ←14.51 16=9-4=21 PR 座標平面上の点P(x, y) が 3y≦x +11, x+y-5≧0,y≧3x-7 の範囲を動くとき, @110 x+y2-4y の最大値と最小値を求めよ。 与えられた連立不等式の表す領域 Dは, 3点A(1, 4), B(3,2), C(4,5) を頂点とする三角形の周 [類 北海道薬大] 境界線の交点 A, B, C C の座標はそれぞれ次の 連立方程式を解くと得ら れる。

解決済み 回答数: 1
数学 高校生

数II、二項定理による証明に関する質問です 赤でラインを引いた部分について、丸をつけたnCrのところが書かれているのは、そもそもの問題と比較した時に証明する等式にもnCrが含まれているからで合っていますか? それともなにか理由があるのでしょうか? 塾の教材には2枚目の①の... 続きを読む

基本5 二係数と式の証明 (1) 19 00000 (822-1.2... n) が成り立つことを証明せよ。 (2)(140)"の展開式を利用して、次の等式を証明せよ。 (1) Co-C1+Ca C-C+2,C,.....+(-2)",C.+....+(-2)"C"=(-1)" (1)C +(-1) C++ (-1)".C.-0 p.13 基本事項 を利用して、 kC をそれぞれ変形する。 10 (2)定理(.13基本事項■)において、 a1bx とおくと 3次式の展開と因数分解、二項定理 (1+x)^=.C+CistaCoナ・・・・・・+C++C ****** ① 挙式のと、与式の左を比べることにより、①の両辺でx=1 とおけばよいこと に気づく。同様にして、(f)()ではに何を代入するかを考える。 (U) A.C.-A. (一) 解答 (n-1)! (k-1)!(n-k)! (-1)! R-CA-1- (1)1((n-1)(A-1)}! したがって RaCa=-1-1 4n!-n(n-1)! (n-1)! (k-1)!(n-k! すべてのxの値に対して成り立つ。 ① (2)二項定理により、次の等式①が成り立つ。 (1+x)"=Cat.Cix+++CsJ......Cax* (ア)等式① で, | とおくと (1+1)=,Co+C11+1+......+.+......+C・1" よって Co+++......+C+....+Ca=2" (イ)等式①で、x=-1とおくと (1-1)"=C+C (-1)+(-1)*+....+C (-1)+..+.C.(-1)* よって Co-C+C+(-1) Cy+....+(-1)",C,=0 (ウ)等式①で、x=-2とおくと (1-2), Co+ C (-2)+2(-2)+....+°C, (-2)"'+....+C (-2) Co-2,C,+2,C2......+(-2)"C,+......+(-2)",C=(-1)* よって 素数とするとき (1) から RCx=poCi-l(p≧2;k=1,2,,p-1) この式はC が必ず』で割り切れることを示している。 次の等式が成り立つことを証明せよ。 5 -+-+(-1)*1 2" 2" (2)が奇数のとき Cot,C2+....+.+.+....+, Co=20-1 (3)nが偶数のとき Cat,C+....+....+aCa-1=24 P.23 EX3、

解決済み 回答数: 1