学年

教科

質問の種類

数学 高校生

青い部分の言っている事の意味がわからないので、教えて欲しいです(*.ˬ.)"

また 脱 a 1 =a"X =a"xa""= a" a" a (²)" - (ax +) = (ab" ")" = a*b=a" x 1 a" b" b" 注意 0^(-nは負の整 数)と0°は考えない よって、 21'3' が成り立つ。 ■県東根 (定義しない)。 正の整数とするとき. n 乗すると αになる数, すなわちx=a となる数xをan乗根という。 3'=81, (-3)*=81 であるから,3と3は81の4乗根であ (5)=125であるから,-5は125の3乗根である。 なお、2乗根 (平方根) 3乗根 (立方根), 4乗根, 累乗根という。 On乗根(x=αの解) について man をまとめて 数学Ⅰでは, 「2乗する とαになる数をの 平方根 (2乗根) とい う」と学んだ。 ここは この考え方の拡張であ る。 y4 y=x" y4 y=x" 方程式xa の実数解は、曲線 y=x” と直線 の共有点のx座標であるから,実数αの 根について、次のことがわかる。 y=a a y=a Na nが奇数の場合任意の実数aに対して 0 x O Va X nが偶数の場合 1つあり、これを α で表す。 >0のとき,正と負の1つずつあり、その正の a' y=a' a' y=a' 5章 5 奇数 n:偶数 "で表す。 このとき,負の方はva である。 28 =0のとき, a = 0 とする。 <0 のとき,実数の範囲には存在しない。 なお, an乗根 α という。 でも偶数の場合でも、 が奇数の場合 については,n √0=0, a>0のときa>0 である。 注意 は今までと同 様に √ と書く。 <n が偶数のとき 負の 数のn乗根は存在し ない。 指数の拡張 ここで、αのn乗根 と n乗根 αの違いをはっきりさせておこう。 16の実数の4乗根は, 4乗して16になる実数で22 の2つある。これに対し, 4乗根 16 すなわち 16 は 4乗して 16になる正の数を意味するから, 2 だけである。 ■累乗根の性質 また >0.60から √a√√b>0 (Na/6)" =(ya)"(2/6)"=ab よって、定義から Vav6="ab ゆえに 41 が成り立つ。 ■無理数の指数 例えば,√3=1.732...... に対して, 173 1732 Ta a¹.73, a¹-732] 15 [a", a 100, a 1000, が限りなく近づく1つの実数値をαの値と定義する。 一般に,a>0 のとき, 任意の実数xに対してαの値を定めること ができ (2) がα>0,b>0 として, r,s が実数の場合 の指数法則 でも成り立つ。 16=2 <42~5も同様に証明 することができる。 <n乗して ab となる正 の数は ab <指数が有理数である数 の列。 273

解決済み 回答数: 1
数学 高校生

(2)の印のついている所について質問です。 どうしてこの3つの式の和が答えになるのか分からないです。この3つの場合があるということなので、足したらダメじゃないんですか?

基本例 3 多項展開式とその係数(1) 17 00000 次の式の展開式における、[ ]内に指定された項の係数を求めよ。 (1)(x+2y+3z) [xyz] 武蔵大) (2) (1+x+x) [x] [愛知学院大 ] p.16基 指針 二項定理を2回用いる方針でも求められるが、 多項定理を利用して求めてみよう。 (a+b+c)” の展開式の一般項は n! a'b'c', p+q+r=n plgirl 解答 (2)上の一般項において, a= 1, b=x, c=x" とおく。 このとき、指数法則により 1.x°(x2)=x9+2 である。 g+2r=4となる0以上の整数 (p, g, r) を求める。 (1)(x+2y+z)” の展開式の一般項は 4! plg!r! x^(2x)(32)=(か!2".3)xyz" ただしp+g+r=4, p≧0, g≧0, r≧0 xyz の項は,p=2, g=1,r=1のときであるから 4! (a+b+c)* の一般項は 4! pig!r! a²bc" (p+gtr=4, p≧0. q≥0, r≥0) ・・2・3=72 2!1!1! 別解 {(x+2y)+3z}* の展開式において, z を含む項は 4Ci(x+2y) •3z=12(x+2y)'z また, (x+2y) の展開式において, x2y を含む項は 3Cix2.2y=6x2y よって, xyz の項の係数は 12×6=72 (2) (1+x+x2) の展開式の一般項は 8! 二項定理を2回用いる方 針。 まず (+3z) の展 開式に着目する。 Þ!q!r! *1*•xª•(x²)*= 8! *x9+2r p!q!r! ただしp+g+r=8 ...... ①, p≧0g≧0, r≧0 x4 の項は, g+2r=4 すなわち g=4-2r ...... ② のときであり,①② から p=r+4 ..... ③ ここで,②g≧0から rは0以上の整数であるから ②③から r=0のとき r=1のときp=5,g=2 よって, 求める係数は 4-2r≧0 r = 0, 1, 2 p=4, g=4 r=2のとき p=6,g=0 (am)=amn <p,q, rは負でない整数。 ②①に代入すると p+4-2r+r=8 <4-2r≧0から2 8! 8! 8! + + 4!4!0! 5!2!1! 610!2! =70+168+28=266 <0!=1 別解 (1+x+x2)={(1+x)+x2}" =(1+x)+C」(1+x)'x'+C2(1+x)(x2)+...... この展開式の中で, x を含む項は C4x4, C197 Caxdxd, C21x4 よって, 求める係数は 8C4+BC17C2+8C2=70+8・21+28=266 ****** 部分 の次数は 6以上。 3 (1) (1+2a-36) [263] 習 次の展開式における, [ ]内に指定された項の係数を求めよ。 (2)(x2-3x+1)10 [x] p.23 EX 1

解決済み 回答数: 1