学年

教科

質問の種類

数学 高校生

写真の質問に答えてください!途中式もお願いします!

x2+(y-2)'≦4,y≧x2 の表す領域である。 この領域の面積Sを求めよ。 (図中の文字 A, B, Cは解答で用いるものである。) 発展 例題 207 右の図の黒く塗った部分は, 連立不等式 基礎例題199 0000 面積を 例 208 発展 例題 飲物線y=x(x-1)と直結 れるとき、定数αの値を求 CHARL CHART & GUIDE 図形 (三角形や扇形など) の面積を利用する 定積分では求めにくい面積 GUIDE 右の図のよ するとき 2S,=全体 として考え s=(((円弧)-(放物線)}dx であるが、上の円弧を表す式はy=-x+2で、 学Ⅱの範囲では積分計算ができない。 そこで, 領域を次のように分けて面積を求める。 = 扇形 三角形 と 解答 x2+(y-2)2=4 と y=x^ から x2 を消去 して y+(y-2)²=4 y14 A MI B ゆえに y2-3y=0 よって y=0, 3 y=3のとき x= ±√3 3 C2 放物線と円の共有点の座 標を求める。 yを去し てもよいが、xの4次方 程式となる。 ゆえに A(-√3, 3),B(√33) -3 0 線分ABの中点をMとすると, 右の図か √√3x ら AM=BM=√3,CM= 1, AC=BC=2, 2 ACB=- この 直線 AB と放物線 y=x で囲まれた部分の面積をSとするとどのよう S= (扇形ABC) △ABC+S S₁ == 2√ 11/21/31/12/31+50円(3)dx =√(x+√3)(x-√3) dx=√3-(-√3))-4√3 ・1+ であるから S/1325+4/3-2/3+3/3 の面積分を 解答 物線と直線の交点のx座標は x(x-1)=ax 方程式 x(x-a-1)=0 すなわち x=0, α+1 を解いて 飲物線と直線 y=ax, 放物線 軸で囲まれた部分の面積を ぞれS, S, とすると s=ax-x(x-1)}dx= =-xx-(a+1)}dx S=-fx(x-1)dx=-= 求める条件は ゆえに S=2S₁ 1½ (a+1)³ a+1=2 a=√2-1 実数解はx= 扇形と三角形の面積は したがって 君だか 途中式もお願いします! 208 放物線y= 4 (1)Tの面積を 6

解決済み 回答数: 1
数学 高校生

この問題の途中で余弦定理を使うためにcos60°を導いていると思うのですが、sinシータが三分の一なので、cosシータが三分のニ√ニとなり、これを使ってはいけないのですか?お願いします!

34 重要 例 174 曲面上の最短距離 右の図の直円錐で,Hは円の中心, 線分AB は直径, 1 OH は円に垂直で, OA=a, sin0= 3 点Pが母線 OB上にあり, PB=1 とするとき, 3 点Aからこの直円錐の側面を通って点Pに至る最短経 路の長さを求めよ。 とする。 AB=2r とすると, △OAHで, AH=r, ∠OHA = 90° r_1 3 a であるから 解答 sin= 側面を直線OA で切り開いた展 開図は、図のような, 中心 0, 半径OA=αの扇形である。 中心角をxとすると、図の 弧ABA' の長さについて 2ла. -=2πr XC 360° 直円錐の側面は曲面であるから, そのままでは最短経路は考えにくい。そこで、曲面 指針 なお、平面上の2点間を結ぶ最短の経路は, 2点を結ぶ線分である。 を広げる, つまり 展開図で考える。 → 側面の展開図は扇形となる。 であるから それぞB x=360°_=360° a a 3 ● PREGNA 3 r 1 a 3 ここで,求める最短経路の長さは、図の線分 AP の長さで あるから △OAP において, 余弦定理により =120° = AP²=0A²+OP²-20A OP cos 60° 0021 A' 2 2 = a ² + ( ²3² α)² - 2a + ²13² α = 1/2 = ²17 α² a -a² 9 A HET AP>0 であるから, 求める最短経路の長さは70 a 10000 0 H A' (A) A HAAL 弧ABA' の長さは、 顔面 の円 H の円周に等しい BL S 2点S, T を結ぶ最短の 経路は, 2点を結ぶ線分 ST (W) 3

解決済み 回答数: 1
数学 高校生

写真の質問に答えてください!

84 重要 例題 174 曲面上の最短距離 右の図の直円錐で,Hは円の中心,線分 AB は直径, OH は円に垂直で, OA=a, sin=1/3 とする。 点Pが母線 OB 上にあり, PB= 点Aからこの直円錐の側面を通って点Pに至る最短経 路の長さを求めよ。 a B=/1/3 とするとき, 解答 sin= =1/3であるから AB=2r とすると,△OAH で, AH=r, ∠OHA=90°, r_1 ---- 円錐の側面は曲面であるから, そのままでは最短経路は考えにくい。 そこで、曲面 側面の展開図は扇形となる。 を広げる,つまり 展開図で考える。 なお,平面上の2点間を結ぶ最短の経路は、2点を結ぶ線分である。 a 側面を直線OA で切り開いた展 開図は、図のような, 中心 0, 半径OA=αの扇形である。 中心角をxとすると、図の 弧 ABA' の長さについて 2ла• r_1 360° -= 2πr -であるから - a 3 B P 0 x=360° =360°/1-120° a ここで, 求める最短経路の長さは、図の線分 AP の長さで あるから、△OAP において、余弦定理に 理により より AP2= OA2+OP2-20A ・CPCO 6'0 a ² + ( 1²/3-a) ². -2a---a a. 9 AP >0であるから, 求める最短経路の長さは -a² A' 誰 √7 A 00000 0 iz. この式体 a 基本153 HE S 20115 【弧 ABA' の長さは,底面 の1の円周に等しい。 2点S, T を結ぶ最短の 経路は, 2点を結ぶ線分 ST 11 ol 2

未解決 回答数: 0
数学 高校生

242.1 tとおいたときにt≠0と条件をつけたのは 傾きを求める際にt=0だと分母が0になるからですよね??

370 基本例題 242 放物線と円が囲む面積 TROCS H ORHANSE 5 放物線L:y=x2 と点 R (0, 21 ) を中心とする円Cが異なる2点で接するとき 4 739 K 味 (1) 2つの接点の座標を求めよ。 (2) 2つの接点を両端とする円Cの短い方の弧とLとで囲まれる図形の面積S を求めよ。 [類 西南学院大 ] 基本 237 指針▷(1) 円と放物線が接する条件を p.156 重要例題102では接点重解で考えたが、 b+aps=d+op ここでは微分法を利用して,次のように考えてみよう。 LとCが点P で接する点Pで接線l を共有する ⇔ RP⊥ℓ LAO (②2) 円が関係してくる図形の面積を求める問題では,扇形の面積を利用することを考え ACT 1 ²0 21 するとるとよい。 半径が , 中心角が 0 (ラジアン)の扇形の面積は byd 解答 (1)y=x2 から y'=2x 果の LとCの接点Pのx座標をt (t=0) とし, この点での共通 の接線をl とすると, lの傾きは 2t 点と点P(t, t2) を通る直線の傾きは ② 放物線y=f(x)と2本の接線と 412-5-1 4t をそれ nens-s DAER RPi l から x2t. S=S+△RBA-(扇形RBA) 200+0x t2_ から -S(+4) √√3x + 2 2 √3 のゆえに、接点の座標は 2 t-0 よって t=± =(2+(-) (2) 右図のように,接点A,Bと点Cを定めると, x- 5 4 4t2-5 5 3 RC:AC=1:13 から ∠ORA=13. RA-2-(1-2)=1 4 4 (298+6) al L と直線 AB で囲まれた部分の面積をSとすると 2 √√3 2 2 2. 10 = √²+ ( ³3 - x³²) dx + 1/2 · 1² · sin ²/3 7-7.1. Ze π一 •1². /3 2 3 √3 4t $$8730<D √3 T 4 3 dx+ (0 √√3 1-(-1){ √ ³ - (- 1¹/3³ ) ² + √³-3- 2 2 4 R (x)) ゆえに f=22-x)(x+\=(xー(x) √√3 π 3√3 4 8+0 S 42-8 B 3 + 3/4 (33) (-33) 2 4 2 A O a)-(0-B $1 π B 132 YA 1-2 722 √3 R t² 5 5 4 540 VAL(y=x2) 4 R R A P 1 132 R

未解決 回答数: 1