学年

教科

質問の種類

数学 高校生

全くわかりません どなたか教えていただきたいです!

338 第9章 整数の性質 応用問題 1 正の整数a,bに対して, a を bで割った商をα余りを とする.つ まり、 a=bq+r が成り立つとする.このとき,以下が成り立つことを示せ. (1) aとbの公約数をd とすると,dはbとrの公約数でもある. brの公約数をd' とすると, d' はaとbの公約数でもある. (2) (3) αともの最大公約数とbrの最大公約数は一致する. 精講 ユークリッドの互除法の 「核」 となる p336 の (*) を証明してみま しょう. 考え方としては, 「αと6の公約数」と「brの公約数」 が (集合として) 一致することを示そうというものです. それがいえれば当然, それぞれの最大公約数も等しいといえます. 解答 (1) αと6の公約数がdであるから, a=dA, b=dB (A, B は整数) とおける.このとき d bx 4 (es) bog= bog= (01)bog r=a-bg=dA-dBg=d(A-Bg) dx (整数) なので,rはdの倍数である. (bもdの倍数でもあるので,) dは6とrの公 約数である. (2)との公約数がd' であるから, WAON (ROSS) b=d'B',r=d'R (B', R は整数) とおける.このとき a=bg+r=d'B'g+d'R=d' (B'q+R) d'x (整数) なので, a は d' の倍数である. (bもd' の倍数でもあるので,) d' はαと の公約数である。 (3)(1)(2)より「α と6の公約数」は「bとの公約数」 と(集合として) 一 致する.したがって, それぞれの最大公約数も等しくなるので、題意は示せ た。 おません る 持 る

回答募集中 回答数: 0
数学 高校生

1番は解決しました。2番はなぜ外すことができるのか教えてほしいです。

考える。 EU), であるこ 都産大 ] で、次の C BU (2) ACB が成り立つとき, A, B を数 が同時に成り立つことである。 線上に表すと, 右の図のようになる。 ゆえに, ACB となるための条件は k-6≦-2... ①, 3≦k ... ② k-6-2 3 kx これと②の共通範囲を求めて ①から k≤4 3≦k≦4 =xlxは物を全体集合とする。ひの部 3 ←左の図 をかいて 8-14 +7. -+5) ST. ANB B(2.5)であるから a+1-5 =2のとき SEA ゆえに a+7=9, a²-4 よって A=12.4.5), B={4, g このとき、AN(25) となり a+7=5, a 練習 1から1000までの整数全体の集合を全体集合とし,その部分集合A, B, C-2 のとき ③47 A={nnは奇数, n∈U}, B={n|n は3の倍数でない, nEU}, C={n|n は 18 の倍数でない, nEU} とする。このとき, AUBCCであることを示せ。 A={n|n は偶数,nEU}, B={n|nは3の倍数,n∈U} 偶数かつ3の倍数である数は6の倍数であるから AnB={nnは6の倍数, n∈U} また,C={n|n は 18 の倍数, n∈U}であり,18の倍数は6の CCANB & J 倍数であるから よって A={2, 4.5), B=(4. このとき、ANB ={2}となり、 上から a=2 [←BC30以下の自然数全体を全体集合 「〜でない られて このこともA={2, 4, 6, 8, 10, 12, の集合をB5の倍数全体の集合 (1) ANBOc (2 ることの着 30}. B={3,6,9,12,15,18, 21, 24, 27, 30), .0)- CCAUB ド・モルガンの法則により, An=AUBであるから 0 よって ② CAUB すなわち AUBCC 検討 ド・モルガンの法則 AUB=A∩B, ANB=AUB が 成り立つことは,図を用いて確認できる。 ←QCPによって C=(5, 10, 15, 20, 25, A∩B∩C={30} BUC 。 (a) U .0) まず, AUB=ANBについて, AUB は図(a) の斜線部分, AnBは図(b)の二重の斜線部分である。 の ={3,5,6,9,10,12, よって AN(BUC)= A∩B={6,12,18,2 (AUB) NC= (b) U O が AUB B (b) 部分が 重なり合った 次のことを証明せ ANB SO (1) A={3n-1/r 図 (a) の斜線部分と図(b) の二重の斜線部分が一致するから ALIZ (2) A={2n-1| xEB とすると, x=6

回答募集中 回答数: 0