学年

教科

質問の種類

数学 高校生

テトナがわかりません。 答えに樹形図があったのですがいまいち理解ができませんでした…どなたか写真の樹形図の説明と書き方を教えてください。 すみませんがよろしくお願いします🙇‍♀️

第4問 (配点 20) 1個のさいころを繰り返し投げ,次の規則(a), (b) にしたがって箱の中の球の個数 (以下, 球数) を変化させる。 最初, 箱の中に球は入っていない。 (2) さいころを2回投げた後の球数のとり得る値は, 小さい方から順に 2, ウ I 2回 であり,それぞれの値をとる確率は次のようになる。 規則 (a) 1回目に出た目が, 3の倍数のときは箱に球を1個入れ, 3の倍数でないと きは箱に球を2個入れる。 b 2回目以降は次のように球数を変化させる。 出た目が3の倍数のときは箱に球を1個追加する。 出た目が3の倍数でないときは球数が2倍になるように球を追加する。 例えば, 1, 2, 3回目に出た目がそれぞれ 6, 3, 2ならば, 球数は 0個 → 1個 +1 ← 2個 4個 +1 ×2 と変化する。 ア (1) さいころを1回投げるとき, 3の倍数の目が出る確率は である。 イ (数学Ⅰ 数学A第4問は次ページに続く。) 球数 2 ウ I 確率 13 オ キ カ ク ケコ よって, さいころを2回投げた後の球数の期待値は である。 また, さいころを2回投げた後の球数が エ であったとき 2回目に出た目 シメ が5である条件付き確率は である。 スメ (3) 球数が5以上になったところでさいころを投げることを終了するものとし, 終了 するまでにさいころを投げる回数をN とする。 ソタメ Nの最小値は であり, N= となる確率は である。 チツ× テトX X また,Nの期待値は である。 X

回答募集中 回答数: 0
数学 高校生

(1)の答えが14個なんですけどなぜ14個なんでしょうか

解答 648を素因数分解すると する。 648=23.34 648 の正の約数は, 23 の正の約数と3の正の約数 の積で表される。 648の素因数 2)648 2)324 23 の正の約数は,1,2,22,23の4個 2)162 34 の正の約数は,1,3,32,3334 の よって, 648 の正の約数の個数は 5個 3) 81 4×5=20 (個) 答 3) 27 648 の正の約数は (1+2+2+23)(1+3+3+33 +3) を 3) 9 展開した頃にすべて現れる。 3 参考 よって, 求める和は (1+2+4+8)(1+3+9+27+81)=15×121=1815 答 自然数NがN=pqr と素因数分解されるとき,Nの正の約数 個数は (a+1)(6+1)(c+1) 総和は (1+p+…+p) (1+g++g°)(1+r+....+r) 練習 28 次の数について,正の約数は何個あるか。 (1) 192 (2)800 練習 29 360 の正の約数の個数と, 正の約数すべての和を求めよ。 テーマ 11 場合の数の応用 TTT 応 1000円札3枚,500円硬貨1枚,100円硬貨2枚の全部または一部を て, ちょうど支払うことのできる金額は何通りあるか。 考え方 1000円札 500円硬貨,100円硬貨の使い方を考えて,積の法則を使 ただし、金額が0円になる場合は除かれる。 解答 1000円札の使い方は0枚~3枚の 4通り 500円硬貨の使い方は0枚と1枚の2通り 100円硬貨の使い方は0枚~2枚の3通り このうち、全部0枚の場合は0円になるから除く。 忘れないよう よって、支払うことのできる金額は 4×2×3-1=23 (通り)

回答募集中 回答数: 0