学年

教科

質問の種類

数学 高校生

イの解き方を教えてください 答えは41ルート分の24です

28図 28 各辺のきの正四面体 OABC において,辺OBを3:1に内 分する点をPOC の中点をQ,辺BC の中点をRとする。 また、PG ORとの交点をXとする。 1 分 OX の長さを求めよ。 (2) 線分AX の長さを求めよ。 (OBCにおいて、 中点連結定理により OB/QR 図形と計量 図形の基本性質と三角比を利用。 よって OX: XR OP: QR- 1=3 3 : -3:2 OBCは正三角形で、 点Rは辺BCの中点である OR-OB-3 2 から 2 これと①から OX-2732 OR=3 3√3 10 (2) RORA であるから, OAの中点をMとすると COS ∠AOX = OM_13 OR 1 ÷ 2 2 △OAX において, 余弦定理により ① A 10 弘前大 ある 213 角を測る 点Bがあ 距離は *214 体) 215 AB, E BE : 1 R B (1) (2) 2 M AX=12+1 3/3 10 2 -2.1. 3√3 10 67 ・・cos ∠AOX = A 100 A (3) 216 OA (1) /67 AX> 0 であるから AX = 10 (2) ■ Check 28(1)半径1の円に内接する正十二角形の面積を求めよ。 半径1の円に外接する正六角形の1辺の長さを求めよ。 右図のような直方体において, AB=8, AD = 6, D AE=6 である。 ABDE の面積は [ Aから A B 平面 BDE へ引いた垂線の長さは である。 [H] (4)PA=PB=PC である四面体 PABCの頂点Pか G E ら△ABC を含む平面に垂線PH を下ろす。 このと き,点Hは △ABC の外心であることを示せ。 60 VII 三角・指数・対数関数 *21

解決済み 回答数: 1
数学 高校生

数IIの三角関数の問題です。 合成なのですが、答えと全く合わないため、解説をお願いします。

D 頻出 164 三角関数の最大・最小 〔4〕 合成の利用 ★★☆☆ = sin-√3 cost(0≧0≦z)の最大値と最小値,およびそ 10200+0mie (1) (1)関数y= のときの0の値を求めよ。 関数y=asin+coco (004)の最大値と最小値を求めよ。 lioAction asin0+bcos0 は, rsin (0+α) の形に合成せよ 例題 163 サインとコサインを含む式 (1) y=sine-√3 cos 0≤ B VII 0 0- sin0- ≤π S 図で考える nie) S-ynia 1 y = ↓ 2 sin (0) サインのみの式 A- (2) 合成すると,αを具体的に求められない。 3 OB 1 x 1 章 10 →αのままにして, sinα, cosa の値から,αのおよその目安をつけておく。 加法定理 (1) y=sine-√3 cose 元 =2sin0 in (0 3 as π より π ≤ 0- 3 3 23 よって 12 * sin(0-4)≤1 3 -√3≤ 2sin(0-3)≤2 y x 3 π COS 20 -√3 P nie 0800+ ite したがって T 20- 3 2 0-2 = 1 すなわち のとき 最大値2 5 0 = 020 2 O 11 1x 3 2 πのとき最大値2 3-1=3 π π 0- すなわち 0=0 のとき 最小値√3 3 3 3 例題 162 (2)y=4sin0+3cos0=5sin (0+α) とおく。 5 a 4 3 ただし, α は cosα = sina ... 15 ① を満たす角。 0 4 x π 2 π YA 0= 2 0≤0≤ より asta≦ +α ① より 0<a< であり, sina <sin (+α)である π 4 3 から sin (0+α) ≦1 5 大量 10 <3> a -1 04/1 x sin (+α) 5より, yは 最大値 5, 最小値 3 sina sin(+α) ≦1 164(1) 関数 y=sing-cost (0≦0≦x) の最大値と最小値, およびそのときの 0 の値を求めよ。 37851=0200+ Onia (1) sin+cosx) の最大値と最小値を求めよ。

未解決 回答数: 3
数学 高校生

このまるで囲ったところがなんでそうなるのかわかりません😭

non 264 解答 練習 ③ 164 基本例 oses Bのとき, 関数 y=√3 sin Acos0+ cos2 また、そのときの0の値を求めよ。 = y=√ 例題 164 三角関数の最大・最小(5) 合成利用 2 指針 前ページの基本例題 163 のように, かくれた条件 sin²0+ cos²0=1 を利用して まくいかない。 ここでは, sin 20, sin Acose, cos20のように sin 0 と cos0の だけの式(2次の同次式)であるから, 半角 倍角の公式により sin'g=1-cos 20 /3 sin cos0+cos2日 20+ 1+cos20 2 2 この関係式により, 右辺は sin 20 と cos 20 の和で表される。 そして、その 関数の合成により, psin(20+α)+αの形に変形できる。 すなわち、sin 0, cos0 の2次の同次式は、20の三角関数で表される。 ① 1次なら 合成 2 すなわち 1 =(√3 sin 20+cos 20)+ 2 = sin(20+ 7) + 1/²/ 0≧0≦2のとき, をとる。 2 sin 20+(1+cos 26) π π 2014/10/12 = 6 π 6 π 7 = 6 6 同周期の sin と cos の和 ② 2次なら 2条がある→2倍角の公式利用 45 20 ≤20+5 ≤2.4+5 6 6 π 6 sin Acos0= VII 1620 20 の最大値と最小値を求め つまり 0= -1 sin 20 2 関数 y=cos20-2sin@cos0+3sin20 また、そのときの0の値を求めよ。 =2のとき最小値 YA 1 7 67 -1 O 2 20 に直して合成 1 2 -πであるから, この範囲でyは 6 TT つまり= 1/72 のとき最大値 1+12-12 3 cos20=- 1 2 + 基本 162,163 /1x 2 ◆指針 sin20, sin Acost 0 165 2次同 重要 例題 実数x,yがx2+y2=1 を はである。 ≤20+ 指針 1文字を消去, 実数解 x2+y2=1は, 原点を →点 (x, y) は単位 これを3x2+2xy+y 後は前ページの基本 の式は、 を使って の三角関数に直す。 3 sin20 + cosm = 2 sin(20+4) 解答 0 (06≦2)の最大値と最小値を求めら x2+y2=1であるか くことができる。 P=3x²+2xy+y² と P.270 EX102 P=3cos20+ 1+co =32 603210 = sin 20+ 0≦0 <2のとき, -1≤ 2012/ssin 24 円の媒介変数 一般に, 原点を とし, 動径O 検討 ゆえに -√2 よって, Pの最 参考Pが最大となる すなわち=17/08 与える x,yの値が これを円の 練習 平面上の点 ④165 値を与える

解決済み 回答数: 1