学年

教科

質問の種類

数学 高校生

大学受験の過去問です。回答教えて欲しいです!

次の問題1 は 1 以下の問いに答えよ。 の中に解答を書くこと。 (1) a,bを実数として、 複素数 1-v 1+V2 (2) 2次方程式2+3c-1=0の2つのをaとするとき, of af +82= ある。 また、公差は fo (3) 初境が6で未項が16の等差数列があり、 すべてのが90 となるとき、数は のは の形に表すと、 である。 特式f(d=22-5-3 を満たす関数f(x)は である。 である。 - である。 212 3 人 となる。 (5) Blogs logs 50g 計算すると / である。 また, log2 5 x logs 3 x log」 8 を計算すると 3 wysostora. のとき、y=cos 20 +2sin 01 の最大値は である。 また、 5回投げたとき、点Pが1より右の位置にいるは 15 3 (6) 出たときは左へ2だけ進むものとする。さいころを3回投げたとき、点Pが点いる確率は である。 で 定数aの値は である。 また、そのときの (7) 数直線上で、点Pは点Oを出発し、さいころを投げて4以下の目が出たときは右へ」だけ進み、他の目が 3 である。 次の問題 2 は卵に至るまでの計算過程を書くこと。 20h=(2,-1),OB=(1,3), 06 (7,7) のとき、次の問いに答えよ。 T (1) a, B を実数として、0+801と表すとき,の値を求めよ。 (7.7)=d(2,-1)+B(1,3) 7=0+3B7=-X+9 d=2、B=3 △OAB において、辺ABと直線OCの交点をPとするときを実数としてOP=OCとせるの 値を求めよ。 (2) 直線BC上を点Qが働いて行くとき, PC が最小となるような点の座標を求めよ

回答募集中 回答数: 0
数学 高校生

2枚目の丸書いたところの式変形が何してるかわかりません。どなたか教えてください

10 第1章 極限 連続関数 V3 > 1 = a より が成り立つと仮定すると、 を数学的帰納法により示そう.n=1のときはα2 = (**) が成り立つ。 (**) でn=kとした ak+1 > ak Qx+2 = Vak+1 + 2 > Vax + 2 =0k+1 であるから, (**) はn=k+1におい ても成り立つ。ゆえに, 数学的帰納法により (**) が示され, {an}は単調増加 数列である. 道) (有界性) [偽解] と {an}の単調性より, すべてのnに対してan <2が 成り立つことが予想される. それを数学的帰納法で証明しよう.n=1のとき には明らかに正しい。am-1 <2と仮定すると, an <v2+2=2であるから すべてのnに対して <2が成り立つことが示された. 以上により, (*) で与えられた数列が収束することがわかったから,あとは, [偽解] をそのまま繰り返せばよい. 別解 ([偽解] によってか,または別のなんらかの方法によって,極限値は 2であるとの目星がついているものとする. しかしそのことには楽屋裏に隠し て) 極限値が2であることを証明する (と, 天下り的に始める). |an-2|= |van-1 +2-2|= | (an−1+2)-221 Van-1+2+2 2 ≤ ≤ (2) 10 n-1 Jan-1-2 2 次の定理は重要である. 定理 1.1.5. 数列 |an-2-2|… は,n→∞のとき収束する. 証明 定理 1.1.4 を使う. n-1 であり, n→∞ のとき 注 (1/2)" 0 は,ここでは直感的に明らかとして使ったが,証明は,問 1.1.1 (p.13) としておく. an = (1+1) ≤ (1) * →0であるから, an 2である. n |a1-2| ■ (1.1.5) i) (単調性)二項定理13 により an = (1 + ²)" =1+-+ n 1 - 1 + ² + (₂¹ (²+...+(-)-(-) 2 n(n-1)/1 = n 2! n! n 1nn-1 2! n 1nn-1n-2 n 3!n n n 1 =1 + ¹ + 1 (¹ - ¹) + ¹ (¹ - - ) (¹ - 3) +--- 1- 2! (1 1- 3! + -/+ (¹ - ) --- (¹ - ¹ = ¹). (1) (1-^-¹). n! an+1 = 1+1+ 13 + ii) (有界性) 上の an の計算式の4~5行目より 1 an < 1+1+ 1 2! +...+ 1 1.1 +・・・ + = 1+ 数列の極限 n! 1 2n-1 同様に + ¹ + 2/1 (¹ - - ² + 1) + + - - 1 (¹ -²-₁)---(1----1) 1- 2! 1- n+ n! <1+ 1 n+ 1nn-1 n! n n 1 + (n + 1)! (1 - ~ + ₁) --- (1 - ~ ²+1). n+1 an と an+1 の違いは分母がnからn+1に変わっていることと、 最後の項が追 加されていることである.ゆえに, an < an+1 であり, {an}は単調増加数列 である. 11 <1+1+ +... + 2 1-(1/2)" 1-1/2 ゆえに, {an}は上に有界である.なお, 2番目の不等式ではn! = 1.2.3.....n> 1・2・2・・・・2 ((n-1) 個の2) を使った. 定義 1.1.3 (eの定義) (1.1.5) で与えられた数列の極限をeと書く. 1 n 1 1-1/2 = 3. n+1 付録 A.2 参照. 14 この有界性の証明からもわかるように, 数列{an}が上に有界である。 すなわち M となる M が存在することを示すには, ぎりぎり小さな M をもってくる必要はない。

回答募集中 回答数: 0