学年

教科

質問の種類

数学 高校生

シャープペンで指してるところの方法の求め方を教えて欲しいです💦 お願いします

So 基本 例題 106 直角三角形と三角比 図のような三角形ABC において,次のものを求めよ。 (1) sine, cos, tan (2) 線分AD, CD の長さ 00000 A W B D 60° p.174 基本事項 1. 重要 110 B 3 C CHART & SOLUTION 基本は直角三角形 暴行 (1)△ABCは∠C=90° の直角三角形であるから, 三角比の定義 (p.174 基本事項 1 ① ) から求められる。 三平方の定理を利用して, 辺 ACの長さを求めておく。 (2) 直角三角形 ADC において,∠ADC=60°の三角比を考える。 175 解答 BC 3 (1) cos = = AB 4 また, 三平方の定理から an AC よって sin0= √7 tan 0= AC=√42-32=√7 √7 AC = AB 4 BC 3 田 (2) 直角三角形 ADC において 13 AC AC sin 60°=- AD から AD=- A sin 60° D cos' mcl 2 AC AC tan 60°= から CD= = =√√√32√72√2104 √3 == 有理化しておく。 3 √7 √21 = AC²+BC2=AB² 5 AC=√AB²-BC² 08-09 (2) AD CD AC 2.1+2.18=0+0=2:1:√√3 から求めてもよい。 なお,最終の答は分母を CD tan 60° √3 3 I 2 POINT 30°, 45°, 60° = 右の表の三角比の値はよく使うの で必ず覚えよう。 0 30° 45° 1 1 sin 30° 444 2 2 1 √3 0203 COS 2 2 45° 60° 1 tan 1 13212 5 60° √3 PRACTICE 106º 右の図において、線分AB, BC, CA の長さを 求めよ。 A 4章 = 12 D 45° 30° B C 三角比の基本

未解決 回答数: 1
数学 高校生

青チャート数2b 21の解説について。段取りはわかったのですがなぜanx^n-1という最高次数の項と2xが比較されているのでしょうか?恒等式というのは存じているのですが、g(x)の中に同じ次数を持ったやつがいる可能性はないのですか? 申し訳ないです。解説お願いします。

重要 例 21 等式を満たす多項式の決定 多項式 f(x) はすべての実数xについてf(x+1)f(x)=2x を満たし, f(0)=1 [一橋大] であるという。このとき, f(x) を求めよ。 指針 例えば、f(x)が2次式とわかっていれば, f(x)=ax2+bx+cとおいて進めることが できるが,この問題ではf(x) が何次式か不明である。 →f(x)はn次式であるとして, f(x)=ax+bx-1+.. (a=0, n ≧1) とおいて 進める。 f(x+1)f(x)の最高次の項はどうなるかを調べ,右辺2x と比較するこ とで次数 n と係数 α を求める。 なお, f(x) = (定数) の場合は別に考えておく。 f(x)=c (cは定数) とすると, f(0) = 1から f(x)=1 解答これはf(x+1)- f(x)=2.x を満たさないから,不適。 よって, f(x)=ax+bxn-1+... ると (a≠0, n ≧1)(*) とす f(x+1)f(x) ...... =a(x+1)"+6(x+1)"'+......-(ax+bx"-1+.....) =anx-1+g(x) ただし, g(x) は多項式で,次数はn-1より小さい。 f(x+1)f(x)=2xはxについての恒等式であるから,最 高次の項を比較して n-l=1 ...... ..0, an=2 ..... ....... よって 2x+6+1=2x この等式はxについての恒等式であるから すなわち b=-1 したがって f(x)=x-x+1 ② b+1=0 基本 15 この場合は, (*)に含ま れないため、別に考えて いる。 ◄(x+1)" ①から n=2 ゆえに、②から a=1 このとき, f(x)=x2+bx+c と表される。 f(0)=1から c=1 またf(x+1)-f(x)=(x+1)^+6(x+1)+c-(x2+bx+c)c=1としてもよいが, =2x+6+1 結果は同じ。 =x"+nCix"-1+nC2x"-2+... のうち, a(x+1)+1-ax” の最高 次の項は anxn-1 で 残 りの頃はn-2次以下と なる。 <anxn-1と2x の次数と 係数を比較。 係数比較法。 POINT 次数が不明の多項式は,n 次と仮定して進めるのも有効

回答募集中 回答数: 0