学年

教科

質問の種類

数学 高校生

オレンジで印をつけたところについて。なんで両方ともイコールがついてるんですか?a<1の場合、a=1の場合、a>1の場合のように区別するんじゃないんですか?

40 72次関数の最大・最小/定義域が一定区間 αを定数とする. 2次関数y='ー2ax+3の0≦x≦2における最大値 M (α) を, 最小値をm(a) とする.M(a), m (α) を求めよ. またM(α) -m (a) の最小値を求めよ. ( 類 摂南大) v=d(x-p2qのグラフ m 2 平方完成 2次関数の値の変化の様子をとらえるには, y=d(エーp)2+qの形 (平方完成) にすることが絶対的であって (ェが1か所にしか登場しないので, 関数値の変化の様子がよく 分かるようになる), 関数値は 1/4 d>0 d<0....... |ーカが大きいほど小さくなる d0.......が大きいほど大きくなる というように変化することが分かる. d<0 g-- 9 0 P x 70 P 最大・最小 下に凸 (2次の係数が正) の場合、区間α ≦x≦ β における最大・最小は下のよう. v=f(x) 最大はこれらを使って ① (軸) (軸) ② ③ ④ 最小 最大 (6) 最小 最小 最大 最大: 最大: Ü v v Û Û Û Ü け f= fla 05 a 0 x α Bx x a B α B x a B x 最小はこれらを使って 区間の中点 最小値は, 対称軸が区間内であれば頂点の座標 (上図②), なければ対称軸に近い方の端点のy座標 である (1, 3). 最大値は, 対称軸から遠い方の端点のy座標, つまり対称軸が区間の中点より左側に あればf (B) (④, ⑤), 右側にあればf (α) (⑥ ⑦) である. +B 2 ■解 fl: グラン 解答 f(x) =ュー2ax+3 ア とおくと, f(x) = (x-α) -α+3であるから, y=f(x)のグラフは下に凸で,軸はx=αである. 区間 0≦x≦2 における最大値は, 区間の中点がx=1であることから, a≦1 のとき,M(α)=f(2)=-4a+7 (アに代入した) 1≦a のとき,M(α)=f(0)=3 また, 0≦x≦2における最小値は, 軸が区間に入るかどうかに着目して 0≦a≦2のとき, m(α)=f(a)=-α2+3 [注] M(α), m (α) はαで表され ることから,M (α) -m (α) は a の関数と見ることができる. 軸と区間の中点の位置関係で場 合分けする(上図 ④と⑤のケース と, ⑥と⑦のケースとで場合分 け)。 上図の② ①③で場合分けする. つぎ ここ b a<0 のとき,m(a)=f(0)=3 2<a のとき, m(α)=f(2)=-4a+7 以上からM (α), m(a), M(α) -m (α) は次のようになる. 直線 b=-4a+4 であ よ ■m (α) の場合分 [0≤a≤2 図 1 直線 b=44-4 けは,a≦0 12≦a a M(a) m(a) M(a)-m(a) a<0 0≤a≤1 -4a+7 3 -4a+7 -a²+3 -4a+4 (a-2)² 1≤a≤2 2<a 3 3 -a²+3 -4a+7 a² 4a-4 b=a2 b=(a-2)2 0 2 a としてもよい。 境界のα=0, 2 では2つの m(α) の式で通 用し、 同じにな るかでミスを チェックできる. b=M(a)-m(a) のグラフは右図のようになるから, α=1のとき最小値1 07 演習題 (解答は p.56) a を実数とする.y=a(x-a)+1の-1≦x≦2における最大値Mを求めよ。 (愛知医大・看護)の符号にも注意する。

解決済み 回答数: 1
数学 高校生

Focus Gold 数学Ⅱ 例題105 黄色マーカー部、Y=0のとき、グラフのどの条件のことをさしていますか?

の交点Pは,どのような図形を描くか. 3章 図形と方程式 例題 105 2直線の交点の軌跡 ( 1 ) mが実数値をとって変化するとき, 2直線 y=mx+8...... ① x+my=6..... ② (別解Ⅰ) ① ② ②よ 6-8m 6m+8 考え方 ①②の交点Pの座標を求めると, x=- 2 y 1+m² 1+m² となり、ここか した 解答 去してxyの関係式を導くこともできるが, 計算がやや大変ではある。 ここでは、交点をP(X, Y)として, 1, ②より [Y=mX +8 LX+mY= 6 この2式よりを消去して,XとYの関係式を導くことを考える 交点の座標をP(X, Y) とすると, Y=mX +8 ...... ①、 X+mY=6...... ②、 6-X (i) Y0 のとき,②より, m= ③ Y ③①'に代入して, Y = - 6-X ・X+8 より Y こうする 分母にくる Y=0 と Y'=6X-X2+8Y 場合分けを したがって, (X-3)2+(Y-4)²=25 ④より、た ただし, Y = 0 となる④上の点(0, 0) (60)は除く。 X+m0=6 (i) Y = 0 のとき,②より, X=(別解 2) wwwwww つまり、 X=6 ①'に代入して, 0=m・6+8より,m=-- 4 3 4 3 したがって, m=-- のとき 2直線の交点は m=- P (6,0)となる. に代入し よって, (i), (ii)より交点Pの描く図形は, 中心 (34) 半径50円 ただし、原点を除く. てみるとよい (道)より、( た点(6.0)) 描く図形に Focus 注 2直線の交点の軌跡を求めるには, 「媒介変数の消去」か 「図形の性質を調べる」 次ページの (別解1) では,計算が大変になるが, m (媒介変数) の消去の練習にもなるので,交点P (x, y) の座標より,x,yの関 係式を導いている,また (別解2)では,①の傾きは②の傾 きは 1で、m=-1 より ①と②は垂直に交わる m m かるので,求める交点Pの軌跡は, AB を直径とする円周上にあると考えら また、①,②はそれぞれ定点A(0, 8), B(6, 0) を通ることがわ 練習 105 *** (6-

解決済み 回答数: 1
数学 高校生

青チャート数学Ⅲ77ページの練習45です 重要例題45の⑵と同じ様に 練習45もこのようにやったら間違いですか?

(1) すべての自然数nに対して、1+1が成り立つことを証明せよ。 1 1 k=1 1 (2) 無限級数1+ n + +....+ +...... は発散することを証明せよ。 2 3 ・基本 34, 重要 44 指針 (1) 数学的帰納法によって証明する。 (2) 数列{1} は0に収束するから、p.63 基本例題 34のように,p.61 基本事項 ② を利用する方法は使えない。 そこで, (1) で示した不等式の利用を考える。 n2" とすると k=1 k k=1 1/11/ 4 ここで,m→∞のときn→∞となる。 (1) k ≥1/12+1 ① とする。 無限級数 阻 解答 [1] n=1のとき k=1k 1/2=1+1/2=1/1/3+1 よって, ① は成り立つ。 +1 [2]n=m(m は自然数)のとき,①が成り立つと仮定すると100+ このとき 2 11+1 k=1 k (+1)+2+1 2m+1 k=2m+1 k 1 1 + ++ 2m+2 2m+1 > m2m2 1 1 +1+ + ++ 2m+1 2m+2. 2m+2m_ 1 m+1 +1+ .2m= +1 2m+1 2 よって, n=m+1のときにも ① は成り立つ。 1 12m+1=2m2=2"+2" 1 1 2m+1 2+2+2 (2+) 2m+k (k=1, 2,., 2-1) [1] [2] から, すべての自然数nについて①は成り立つ。 (2)S=2とおく。 n≧2" とすると, (1) から k=1 k m m Sn≥ +1 ここで,m→∞のときn→∞ で lim (7/27 +1)=0 .. limSn=∞ m-oo 8012 したがっては発散する。 an≦bnでliman=∞⇒limbn=∞ (p.343②) 72-00 12-00 n=1n 重45の結果を開いて、無限級数学は発散 0 (2)より、 m を示したい 同様に n Th=8とおく。≧とすると、 k=1 12/2計++言を計計+2より 2m m Th≥ 8 +1 : lin Th=00 " 題意は示された

解決済み 回答数: 1