学年

教科

質問の種類

数学 高校生

(2) のベン図のBの部分に2と9が入るのはなぜですか?

解 64 基本 例題 35 2つの集合と要素 00000 (1) U=(1, 2, 3, 4, 5, 6, 7} を全体集合とする。 Uの部分集合 A={1, 4), B={2, 4, 5, 6} について, 集合 ANB, AUB, AUB を (2) 全体集合 U={x/1≦x≦10, xは整数} の部分集合 A, B について、 A∩B={3, 6, 8), A∩B={4, 5, 7}, A∩B={1, 10} とする。 求めよ。 このとき, 集合 A, B, AUB を求めよ。 CHART 集合の要素 OLUTION ベン図の活用 p.62 基本事項 1 基本38 集合に関する問題は,ベン図 (集合の関係を表す図) をかくとわかりやすい。......!! (1) まず, A∩B の要素を求めて図に書き込む。 そして, A,Bの残りの要素を 書き込んでいく。 (2)要素のわかっている集合 A∩B, ANB, A∩B が図のどの部分かを調べて、 その要素を図に書き込んでいく。 (1) A∩B={4} よって, 右の図のようになり B 2 A∩B A∩B={2,5,6} AUB={1,3,4,7} AUB={3,7} (2)条件から、右の図のようになり U A={1,3, 6, 8, 10} 4 1 B={2,3, 6, 8, 9} 5 10 7 AUB ={1,2,3,6,8,9,10} 2 3/6/8 6 AUB B 基本 例題 36 実数全体を全体集合 C={x|k-5≦x≦k (1) 次の集合を求め (ア) A∩B (2) ACCとなる CHART SOL 解答 不等式で表され 集合の要素が入 すとわかりやす その際、端の で表しておく 例えば,P= (1) 右の図から (ア) A∩B={x|- (イ) AUB={xl (ウ) B={xx<- (エ) AUB={x| (2) ACCとなる k-5-2 6≦k+5 が同時に成り立 ①から k≤ 共通範囲を求め INFORMATIO (2) において, ACC′ となる A AUB すなわち, 1 置する会体 PRACTICE... 35% ② (1)=1,2,3,4,5,6, 7, 8} を全体集合とする。 Uの部分集合 A={2,5, B={1, 3, 5} について, 集合 ANB, AUB を求めよ。 (2)1桁の自然数を全体集合ひとし その2つの部 A∩B={3, 9}, A∩B={2,4 Bを求めよ。 6) PRACTICE・・・ 3 B={x|-3< (1)次の

解決済み 回答数: 1
数学 高校生

この問題の(2)の赤線の部分なのですが、条件付き確率なので公式に入れて求めてみたら値が違うものになりました。多分矢印で書いた方の求め方なのですが、どうしてそうなるのかを教えていただきたいです。

V 基本 例題 53 確率の乗法定理 (1) 00000 当たりくじ4本を含む12本のくじがある。 引いたくじはもとに戻さないも のとして,次の確率を求めよ。 (1) A,Bの2人がこの順に1本ずつ引くとき, AもBも当たる確率 (2) A,B,Cの3人がこの順に1本ずつ引くとき,Cだけがはずれる確率 p.340 基本事項 2 CHART & SOLUTION Hom .... もとに戻さないでくじを引く場合の確率 乗法定理を適用 ・・・・・・ 0 引いたくじはもとに戻さないから,前に引いた人の「当たり」 または 「はずれ」により、次 に引く人の「当たり」 または 「はずれ」 の確率が変わってくる。 解答 A, B, C が当たる事象をそれぞれ A, B, C とする。 ① (1) 求める確率は P(A∩B)=P(A)PA(B) Aが当たる確率 P(A) は P(A)=4 12 Aが当たったとき, 残りのくじは11本で当たりくじ3本 を含むから,条件付き確率 PA (B) は よって PA(B)=- 3 11 P(A∩B)=1/23 = 3 11 11 I C 確率の乗法定理。 当たりくじは3本。 (2) 求める確率は P(A∩BNC)=P(A∩B) PanB (C) 条件付き確率 PanB(C) は, A, B が当たったとして,次に Cがはずれるときの確率であるから 8 PanB (C)=- 10 よって, (1) から ◆ A, B は当たる。 ←このときCは、残りのく じが10本で,当たりく じを2本含むものから くじを引く。 P(A∩B∩C)=P(A∩B)Pana(C)=1/1×20 4 55 P(A∩B)=1/1 INFORMATION 確率の乗法定理の解答について

解決済み 回答数: 1
数学 高校生

cos2分のθを求める問題で、半角の公式を使うところまではできたのですが、cosθをどう変えれば良いのかわからなくなったので教えて欲しいです

213 131 で sing 2倍角、半角、3倍角の公式 のとき, sin 20, cos- 0 3 2' JMART & SOLUTION 半角、3倍角の公式 sil coso, tan の値が基本 sincost, cos20 00000 cos30 の値を求めよ。 p.208 基本事項 31 cos30=-3cos0+4cos' であるから、まず 1+cos = 2 2 求める必要がある。 また, 符号に注意。 π 0 4 ちから cose<0 << cos>0 であるから cos <0 2√2 VI- (1) --2.2 3 3 1/2-2/2)=46/2 3 cost=-√1-sino= == 1- って えに sin20=2sinocos0=2・ 2√2 3 2√2 1- に COS 12 3 3-2√2 6 sin²0+cos20=1 4√2 2倍角の公式 9 40 17 加法定理 2 <B<πより, って COS 82 4 1+cos 0 023 2 -2 πT であるから 2 半角の公式 0 cos >0 の範囲に注意。 √√6 √6 3-2√2/3-2/22-1 6 2√3-√6 6 = cos30=-3cos+4cos'0 FORMATION --3.(2/2) +1(-2,2)-10/2 =-3· 3 √3-2√2 =√(√2-1)2 =√2-1 (2重根号をはずす) 3倍角の公式 忘れたら, 加法定理から \3 27 導く。 p.220 PRACTICE 138 参照。 三角関数の公式を導く 一角関数に関連する2倍角, 半角, 3倍角などの公式はたくさんある。 そのすべてを する必要はない。 元となる加法定理から導けるよう, 導き方を頭に入れておこう。 ■p.224 まとめ 参照) NCTICE 131 sin 30 の値を求めよ。

解決済み 回答数: 1