学年

教科

質問の種類

数学 高校生

この問題わかる方いらっしゃいましたら教えていただけると嬉しいです🙇‍♂️

64 14 次のような街路の町の地図を見て、下の問いに答えよ。 ふもとに開きない。 Po Qo Q₁ Pi Q₁ P P Q2 時間 しかの とならない A B Q₁ TEOA PP Q5 GA (6] Q. (1)S地点からスタートしてA地点に行く最短経路は,分かれ道が3回ある中で左下を ア 回 右下を イ 回選ぶから, ウ | 通りある。同様に考えると,B地点に行く に起こると期待できる 最短経路も ウ通りあることがわかる。 (2)S地点からスタートしてC地点に行く最短経路を数える方法はいくつかある。一つの方法 は,4回ある分かれ道での進み方を考えるもので、この場合の数はCを計算することで 求められる。ほかにも, A地点を通る最短経路とB地点を通る最短経路をそれぞれ考えても キがC地点に行く 求めることができ, A地点とB地点それぞれを通る最短経路の数の 最短経路の場合の数であると言える。 下線部について, A地点を通る最短経路とB地点を通る最短経路に関する正しい記述は オ と カ である。 オ の解答群(解答の順序は問わない。) ⑩ A地点とB地点の両方を通るC地点までの最短経路が存在する。 ① A地点とB地点の両方を通るC地点までの最短経路は存在しない。 C地点までの最短経路は必ず A地点とB地点のどちらか一方を通る。 ③A地点とB地点のどちらも通らないC地点までの最短経路が存在する。 キ については,最も適当なものを,次の①~④のうちから一つ選べ。 ⑩ 和 ① 差 ②積 商 平均 C地点に行く最短経路は ク 通りある。

回答募集中 回答数: 0
数学 高校生

(2)(イ)の考え方が分かりません

基礎問 精講 今目で 135 場合の数と漸化式 (1)5段の階段があり、1回に1段または2段 登るとする。このとき,登り方は何通りある か。ただし、スタート地点は0段目とよぶこ とにする. (右図参照) (2)(1)と同じようにn段の階段を登る方法が の画 an通りあるとする.このとき (ア) α1, a2 を求めよ. n≧1 のとき, an+2 を an+1, an で表せ (ウ) αg を求めよ。 211 (イ) 1回の登り方に着目して(n+2) 段の階段を登る方法を考えると次 の2つの場合がある。 ① 最初に1段登って, 残り (n+1) 段登る ② 最初に2段登って、残り段登る ①,②は排反で, (n+1) 段登る方法, n段登る方法はそれぞれ an+1 通り, an通りあるので, an+2=an+1+an an+2=an+1+an (ウ)(イ)より, い as=a+α6=(a6+αs)+α6 =2a+αs=2(as+α)+as =3a5+2a=3(a+α3)+2as =5a+3a3=5(as+az)+3as =8a3+5a2=8(az+ai)+5az (1) まず, 1段, 2段, 2段と登る方法と2段, 1段, 2段と登る 方法は、異なる登り方であることをわかることが基本です。次に, ると=1段を使う方法は5が奇数であることから1回,3回, 5回のどれかです. わらないかんそこで, 1と2をいくつか使って,和が5になる組合せを考えて,そのあと 入れかえを考えればよいことになります。 (2)(イ)これがこの135 のメインテーマで, 漸化式の有効な利用例です。考え 方は、ポイントに書いてあるどちらかになります. この問題では,どちらで も漸化式が作れます。 (ウ)漸化式が与えられたとき, 一般項を求められることは大切ですが、漸化 式の使い方の基本は番号を下げることです。 解答 (1)5段の階段を登るとき, 1段登ることは奇数回必要だから, 1段を1回使う組合せは, 1段, 2段2段 参考 =13a2+8a=13×2+8×1=34 (通り) IA 91 ポイント I. (ウ)の要領でas を求めると, α5=3a2+2a=3×2+2=8 (通り)となり, 1) の答と一致します。 Ⅱ. 最後の手段に着目するときは,次の2つの場合となります。 ① まず(n + 1) 段登って, 最後に1段登る ②まず段登って、 最後に2段登る ポイント 場合の数の問題で漸化式を作るとき、次のどちらか ① 最初の手段で場合分け ② 最後の手段で場合分け 3回使う組合せは,1段, 1段, 1段, 2段 演習問題 135 3+4+1=8 (通り) (2)1段登る方法は1つしかないので, a=1 5回使う組合せは,1段, 1段, 1段, 1段,1段で それぞれ,入れかえが3通り,4通り、1通りあるので 横1列に並べられたn枚のカードに赤か青か黄のどれか1つの 色をぬる. 赤が連続してはいけないという条件の下で、ぬり方が an通りあるとする. (1) a1, a2 を求めよ. 2段登る方法は,1段,1段と2段の2通りあるので,a=2 (2) an+2 を an+1, an で表せ . n≧1のとき, (3) α8 を求めよ.

回答募集中 回答数: 0
数学 高校生

矢印以下のグラフの書き方が分からないです😭 CとDの両方のグラフの書き方を教えて頂きたいです😭😭

•5 最大・最小を候補で求める a>0 とする.f(x)=x(x-3a)(0≦x≦1)の最大値をαの関数とみてg (a) とおく. (1) g (a) を求め, ab平面にb=g(α) のグラフの概形を描け. (2) g(α)の最小値とそれを与えるαの値を求めよ. 最大・最小の候補を比較 閉区間 (a≦x≦βの形の区間)で定義された関 数 f(x) の最大値・最小値は '区間の端点での値'または'極値”のいずれか である.極値を与えるxの値が定数αの入った式である場合, 式だけで最大最 小を考えるよりも,先に最大値(最小値)の候補となる値('区間の端点での値' と‘極値')のグラフを描いてしまい,それらを比べる方が見通しがよい. 解答言 (1) f(x)=x(x-3a)2=x3-6ax2+9ax f'(x) =3x2-12ax+9a²=3(xa)(x-3a) 図1 y=f(x) 4a3 f(a)=4a3, f(3α)=0であり,a>0より y=f(x)のグラフは図1のようになる. 84 (関大 総合情報) 極 値 区間の端点での値 [極大値を与えるx=αが0≦x≦1に入っている かどうかで場合分け] O a 3a 積の微分法 {g(x)(x)}' =g(x)h(x)+g(x)h'(x) を使うと, f'(x) =1(x-3a)+x2(x-3a) 図 2 =(x-3a){(x-3α)+2x} 0≦a≦1のとき YA YA =3(x-3a)(x-a) 最大値はf(a)(=4α) f(1)(=(1-3a)2) 15 C の大きい方 (図2). a 1 セットで a 1 1≦a のとき 図3 最大値はf(1)(=(1-3a)) (図3) YA ここで チェリュー(エリー(エ)ギュー(仮) C: b=4a³ (0≤a≤1) D: b= (1-3a)2 のグラフを描く. .. . (4α-1) (a-1)2=0 0<a<1での, C, D の交点を求めると 4a=(1-3α) 2 4a3-9a2+6a-1=0 O X A la 図 4 b₁ 4 (い C:b=4a3 より (1/4,1/16) b=g(α) のグラフは,図4の太線部であり, 1/4≦a≦1 g(a)=(41-3a)²/ <a≤1/4, 1≤a 19 D: 1 16 b=(1-3a)2 16 この式は,f (a) = f (1) を変形 したものであるからα=1が解で あり, (a-1)で割り切れる. O 11 43 ←C,D のうち, 高い方をたどった ものがb=g(a) のグラフ. 1 (2)図4より,a= 4 のとき,最小値9 (12) (1/4) 1/16 をとる。 =

回答募集中 回答数: 0