学年

教科

質問の種類

数学 高校生

⑵の色の選び方と⑶の色の選び方が何で違うのかと、なんでそのような求め方になるのか教えて欲しいです!!

率 _392 基本事項 並べて固 子音という。 ....★ の方針。 同様に確から 前提にあるた のでも区別し 母音 利用。 並べる。 = 180 (通り) 根元事象が 列も同じ程 でも区別し 38 組合せと確率 本例題 黄の札が4枚ずつあり、どの色の札にも1から4までの番号が1つずつ る確率を求めよ。 全部同じ色になる。 かれている。 この12枚の札から無作為に3枚取り出したとき,次のことが起 色も番号も全部異なる。 [埼玉医大 ] 率 109 EX29\ (1)~(3)の各事象が起こる場合の数α は, 次のようにして求める。 場合の総数Nは, 全12枚の札から3枚を選ぶ 組合せ 123通り 積の法則 (I) (同じ色の選び方)×(番号の取り出し方) (2) 番号が全部異なる。 (②2) 異なる3つの番号の取り出し方) (色の選び方) 同色でもよい。 (3) 異なる3つの番号の取り出し方) ( 3つの番号の色の選び方) 12枚の札から3枚の札を取り出す方法は 赤, 青, 黄のどの色が同じになるかが その色について,どの番号を取り出すかが よって 求める確率は 3C1×4C3_ 3×4 12C3 220 よって 43 札を選ぶ 「順序」にも注目して考えると 色の選び方は 31, 番号の順序は4P3 で 3C1X4C3 12C3 a N 123 通り 3C1 通り 4C3通り 3 55 3通り 取り出した3つの番号を小さい順に並べ, それに対し, 3色を順に黄赤青 対応させる,と考えると,取り出した番号1組について、色の対応黄青赤 が3P3通りある。 /p.392 基本事項 6 220 55 4C3X3P3 4X6 12C3 (3) 1 2 3 赤青 3黄 赤黄青 青 赤 黄 青黄赤 (2)どの3つの番号を取り出すかが そのおのおのに対して, 色の選び方は3通りずつある3つの番号それぞれに対 し,3つずつ色が選べる から、番号が全部異なる場合は 4C3×38通り から 3×3×3=33 4C3X33 4×27 27 よって 求める確率は 12C3 220 55 (3) どの3つの番号を取り出すかが Cg 通りあり、取り出赤,青,黄の3色に対し, した3つの番号の色の選び方が 3 P3通りあるから、色も 1 2 3 4 から3つの数 番号も全部異なる場合は 3×3P3通り よって求める確率は 397 | (1) 札を選ぶ順序にも注目 して考えてもよい。 下の 参考 を参照。 P通り ⑥事象と確率 を選んで対応させると 考えて, 1×4P3 通りとし てもよい。 N = 12P3=12C3×3! a=3C1×4P3=3C1×4C3×3! となる。同様に考えて (2) a=4P3×33 (3)a=P3×3P3 2章 2 [北海学園大 ] 1組のトランプの絵札 (ジャック, クイーン, キング) 合計12枚の中から任意に4 の札を選ぶとき、次の確率を求めよ。 スペード, ハート, ダイヤ, クラブの4種類の札が選ばれる確率 ジャック, クイーン, キングの札が選ばれる確率 スペード クラブの4種類の札が選ばれ, かつジャック, ク n 409 EX 30 、

回答募集中 回答数: 0
数学 高校生

・(1)、(2)の解き方はこの方法でも合っているか ・(3)の黄色マーカーのところで、なぜ3C2なのか。  4C3じゃないのか。 ・3C2は赤1と赤2をひとつの塊として考えて、残り 2  個を選ぶという解釈で合っているか ・(3)で、なぜ青と赤を区別しているのか がわかり... 続きを読む

個を選び1列に並べる。 この並べ方は全部で何通りあるか。 EX (1) 赤色が1個, 青色が 2 個, 黄色が1個の合計4個のボールがある。 この4個のボールから (2) 赤色と青色がそれぞれ2個, 黄色が1個の合計5個のボールがある。 この5個のボールか ら4個を選び1列に並べる。 この並べ方は全部で何通りあるか。 (3) (2) の5個のボールから4個を選び1列に並べるとき, 赤色のボールが隣り合う確率を求め よ。 (1) 3個のボールの選び方は,次の [1]~[3] の場合がある。 [1] 赤色1個,青色2個 [2] 青色2個,黄色1個 [3] 赤色1個,青色1個,黄色1個 このおのおのの場合について, ボールを1列に並べる方法は 3! [1] =3 2! =3(通り) [3] 3!=6 (通り) 3! [2] -=3(通り) 2! 3+3+6=12 (通り) よって, 並べ方の総数は (2) 4個のボールの選び方は,次の [1]~[3] の場合がある。 [1] 赤色2個,青色2個 (188 28 [2] 赤色2個,青色1個, 黄色1個 [3] 赤色1個,青色2個, 黄色 1個 このおのおのの場合について, ボールを1列に並べる方法は 4! 269 [3] 2 -=12 (通り) 4! [1] -=6(通り) [2] 112通り 2!2! (FD) 20 JEIS よって, 並べ方の総数は 6+12+12=30 (通り) (3) 5個のボールを赤1, 赤2, 青 1, 青2, 黄とし, すべて区別し て考える。 5個のボールから4個を選び1列に並べる方法は 5P通り 赤,赤2を含むように4個のボールを選ぶ方法は C2通り このとき, 赤,赤が隣り合うように並べる方法は,まず, 赤, 赤を1個とみなして3個のボールを1列に並べる方法が 3!通り そのおのおのについて, 赤, 赤2 の並べ方が2通りあるから [ミュー] 3!×2=12 (通り) よって, 赤, 赤2 が隣り合う並べ方は全部で 3C2×12=36 (通り) 36 5-4-3-2 したがって、求める確率は 36 5P4 3 10 [中央大〕 ← [1], [2] は同じものを 含む順列。 ←同じものを含む順列。 ←確率では、 同じもので も区別して考える。X3 TE 隣り合うものは枠に入 されて中で動かす 2章 [[[確率] EX

回答募集中 回答数: 0