学年

教科

質問の種類

数学 高校生

math この3つの使い分け方が分かりません😭 いざテストになってごっちゃになるとどうやって見分ければいいのですか??

絶対値を含む方程式・不等式 (基本) 基本例題 34 次の方程式・不等式を解け。 (1) |2-x|=4 (2) |2x+1|=7 w HART & SOLUTION 絶対値を含むときは、 場合分けをして絶対値記号をはずすのが基本であるが, この例題の (1)~(4) の右辺はすべて正の定数であるから,次のことを利用して解く。 c>0 のとき 方程式 |x|=c を満たすxの値は x=±c 不等式 |x|<eを満たすxの値の範囲は -c<x<e 不等式 |x|>cを満たすxの値の範囲は x<-cc<x MERCOL TEN 解答 (1) |2-x|=|x-2 であるから |x-2|=4 1318 x-2=±4 x-2=4 または x-2=-4を北 SHPG よって すなわち したがって x=6, -2 (2) |2x+1|=7から 2x+1=±7 すなわち 2x+1=7 または したがって x=3, -4 (3) |x-2<4 から -4<x-2<4 各辺に2を加えて -2<x<6 (4) |x-2|>4 から したがって -|x-2|>4. (3) |x-2<4 (4) |x-2>4 x-2<-4,4<x-2 x<-2,6x x-2|=4 2x+1=-7 -2 Tomas |x-2|<4. A 2 Xa p.55 基本事項 ||||=|A| x-2|=4 x-2=X とおくと |X|=4 よってX=±4 (81₂20314468 INFORMATION |b-α|は数直線上の2点A(a), B(b) 間の距離ととらえることができるから(p.41 参 照), |x-2|は2点A(2), P(x) 間の距離を表す。 よって, 等式 |x-2|=4 と例題 (3), (4) の不等式を満たすxの値や範囲は, 次の図のように表すことができる。 1250 TER WAR A (2) からの距離が4 6 2x=6 または 2x=-8 x-2<±4 は誤り! x-2> ±4 は誤り! za & LES 4 A (2) からの距離 A (2) からの距離 が4より大より小よりオ -x-2>4- DAT A(2) からの距離 18-01

回答募集中 回答数: 0
数学 高校生

(1)と(3)は解法が酷似していると思うのですが、 (2)と(4)は解き方が違いますよね? これに違和感を覚えるのは、 数学の解法を形式で覚えているからですか?

70 基本例題 41 絶対値を含む1次不等式 (1) 次の不等式を解け。 (1) |x-2|<4 (3) |2x+1|≦3 【CHART 絶対値 場合に分ける 解答 (1) |x-2<4 から 各辺に2を加えて (2) |x+35 から したがって (3) 2x+1|≦3から 各辺から1を引いて 各辺を2で割って 指針> 絶対値を含む不等式は,絶対値を含む方程式 [例題 39 (2), 例題 40] と同様に場合に分 ける が原則である。 (1)~(3) (1) | < (正の定数), (2) は | ≧ (正の定数), (3) は | |≦ (正の定数)の特別 な形なので,次のことを利用するとよい。 c>0のとき ①〕 (4) x-40,x-4<0 の場合に分けて解く。 絶対値を含む方程式では、 場合分けにより,||をはずしてできる方程式の解が場合分 けの条件を満たすかどうかをチェックしたが, 絶対値を含む不等式では場合分けの条件 との共通範囲をとる。 (4) [1] -4<x-2<4 -2<x<6 |x|<cの解は -c<x<c, |x|>cの解はx<-c, c<x x+3≦-5.5≦x+3 x≦-8, 2≦x 3≦2x+1≦3 -4≦2x≦2 -2≤x≤1 のとき, 不等式は x-4<3x これを解いて x≧4との共通範囲は [2] x<4のとき, 不等式は x>-2 x≥4 (2) |x+3|≧5 (4) |x-4|<3x -(x-4)<3x これを解いて x>1 x<4との共通範囲は 1<x<4 求める解は, ①と②を合わせた範囲で x>1 (2) 000000 MALENCO p.59 基本事項 6 <x-2=X とおくと, |X| <4から4<X<4 [1] <x+3=X とおくと, |X|≧5 から XS-5,5≦X [2] [4] <2x+1=X とおくと, |X|S3から-3≦X≦3 14

解決済み 回答数: 4