学年

教科

質問の種類

数学 高校生

(2)数学的帰納法を使うとどういう回答になりますか?

基礎問 45 はさみうちの原理(Ⅱ) 数列{an} は 0<a1 <3, an+1=1+√1+an (n=1, 2, 3, ... をみたす ものとする。このとき,次の(1),(2),(3)を示せ. (1) n=1,2,3, ・・・ に対して, 0<an<3 よって, n≧2 のとき, 3-a.<(3-an-)<()(-a)<<()(3-a) 78 79 \nl (2) n=1,2,3, に対して, 3-an≦ (3) liman=3 精講 11-0 (1) 漸化式から一般項を求めないで数列の性質を知りたいときま ず数学的帰納法と考えて間違いありません。 (B (2)これも (1) と同様に帰納法で示すこともできますが、 「台」を 「=」としてみると,等比数列の一般項の公式の形になっています。 (3)44 のポイントの形になっています。ニオイプンプンというところでしょう。 解答 (1)0<a<3………①を数学的帰納法で示す. mir (i) n=1 のとき, 条件より 0<a< 3 だから, ① は成りたつ. (ii)n=k(k≧1) のとき, 0<ak <3 と仮定すると, 1 <ak+1<4 .. 1<√1+ak<2 n=1のときも考えて, 3-ans \n-1 (3-a) (3)(1),(2)より 0<3-ans()(3-as) 前に不等式証明 あるので匂いプンプン 11-00 ここで, lim はさみうちの原理より (3- = 0 だから, 42 lim (3-am)=0 liman=3 参 考 43 でグラフを利用して数列の極限 を考えました.今回は, 38の復習も 兼ねて, グラフで考えてみます。 (a) y=x as aa y=f(x) y=f(x)=1+√1+x と y=xのグラフを かき, α1 を 0<x<3 をみたすようにとれば, a2, a, ・・・と, どんどん3に近づいていく様 子が読み取れるはずです . (an) d a 3 10 I ポイント 一般項が求まらない数列{an} に対しても lima は, 次の手順で求めることができる ① anのとりうる値の範囲をおさえる 第4章 両辺に1を加えて 2<1+1+ <3 .. 2<ak+1 <3 よって, 0<ak+1 <3 が成りたつ. (i), (ii)より, すべての自然数nについて ① は成りたつ. (2) an+1=1+√1+an3-an+1=2√1+αn まず,左辺に3+1 (右辺)= (2-√1+am)(2+√1+αn) 2+√1+an をつくると (1)より,1<√1+am<2の両辺に2を加えて3<2+√1+an <4 両辺の逆数をとって1/1 3-4 >0 だから, 2+√1+an 3 3-a (3-an) 2+√1+an3 ∴.3-an+1 < ÷(3- ② liman(=α) を予想する →80 ③ |an+1-α|≦klan-α (0<k<1) の形に変形し て, はさみうち 3-an 2+√1+an <右辺にも3-αがでて くる 演習問題 45 xn²+2 √2+1= 1, 2, ...) で表される数列{rn} に 2.xn ついて 次の(1),(2),(3)を示せ. (1) √2+1<In (2) n+1-v (2) (3)lim=√2 8012

回答募集中 回答数: 0
数学 高校生

至急  明日テストなんですが数Aのプリントに解説がないので、分かるやつだけでも全然いいので解説(途中式とか)して欲しいです!

2学期 1-1, 2, 3 数学A 中間試験用演習プリント~レベルやや難~ 1 A, B, C の3人がじゃんけんを1回するとき, 次の場合の確率を求めよ。 (1) Aだけが負ける。 (1)1/1 1 (2) 3 (2)1人だけが勝つ。 24人がじゃんけんを1回するとき, 次の確率を求めよ。 (1) 1人だけが勝つ確率 (3) あいこになる確率 (2)2人が勝つ確率 ( )組( ) 番 名前( 73個のさいころを同時に投げるとき, 次の場合の確率を求めよ。 (1) 出る目の最大値が3以下である。 37 解答(1)/1/ (2) 8 216 (2) 出る目の最大値が4である。 8 正六角形ABCDEF の頂点を動く点Pが点Aの位置に ある。 1個のさいころを投げて, 3の倍数の目が出たと きには, Pは左回りに1個次の点へ移り、他の目が出た ときはPは右回りに1個次の点に進む。 Br F 16 解答 (1) 4 27 2 13 (2) (3) 9 27 3 直線上に点Pがあり, 1枚の硬貨を投げて, 表が出たら右に2m, 裏が出たら左に2m だけ進む。 硬貨を6回投げたとき, 次の確率を求めよ。 (1) 点Pがもとの位置から右に4m (2) 点Pがもとの位置に戻る (1)3回投げたとき, 点Pが点Bにある確率を求めよ。 (2) 4回投げたとき, 点Pが点Aに戻る確率を求めよ。 (3) 6回投げたとき, 点Pが点Aに戻る確率を求めよ。 D 解答 (1) 20 8 (2) (3) 27 25 81 E 解答 (1) 15 64 5 (2) 16 4 AとBがテニスの試合を行うとき, 各ゲームで A,Bが勝つ確率は,それぞれ 喙号で 9 当たりくじ4本を含む10本のくじをA,Bがこの順に1本ずつ引く。 ただし, 引いたく じはもとに戻さないものとする。 あるとする。 3ゲーム先に勝った方が試合の勝者になるとき, Aが勝者になる確率を求め よ。 Aが当たりを引いたとき, Bが当たりを引く条件付き確率は ア イ であるから, A, B が2人とも当たりを引く確率は ウ である。 したがって, Bが当たりを引く確率は エオ 解答 64 81 5 赤玉1個と白玉2個と青玉3個が入った袋から1個の玉を取り出し, 色を調べてからもと に戻すことを5回行う。このとき, 赤玉が1回, 白玉が2回, 青玉が2回出る確率を求め よ。 5 解答 36 3個のさいころを同時に投げるとき, 次の確率を求めよ。 (1) 出る目の最小値が3以上である確率 (2) 出る目の最小値が3である確率 解答 (1) 27 87 37 (2) 216 カ キ である。 ク また, A, B に続き, Cがくじを引くとき, Cが2本目の当たりを引く確率は で ケ ある。 (ア) 1 解答 (イ) 3 (ウ) 2 (カ) 2 (ク) 113 (エオ) 15 (キ) 5 (ケ) 5

回答募集中 回答数: 0
数学 高校生

数2の質問です! 267の(1)で ~ のところは - の符号をつけて考えないのかを 分かりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

265(1)(与式)=2fxdx5fxdx+3f dx =2.1x1-5.3x²+3.x+C =1/2x2x'+x+C(Cは積分定数) x軸との上下関係をつかむ。 (2) (与式)= 式)= [1/1 t)=2f(3x2-1)dx=2[xx テーマ 121 3 次関数のグラフと画 応用 曲線y=(x+1)(x-1)(x-3) とx軸で囲まれた部分の面積Sを求めよ。 考え方面積の計算では、まずグラフをかく。そして, x 解答 方程式(x+1)(x-1)(x-3)=0を解くと x=1,1,3 グラフは右の図のようになり 1≦xly 20 1≦x≦3 で yo また y=(x+1)(x-1)(x-3) =x3x²-x+3 よって、求める面積Sは S=(x³-3x²-x+3)dx +(-(x³-3x²-x+3))dx =8 練習 265 次の不定積分,定積分を求めよ。 メー =(-4+8+12-2)-(-4-8+12+2) =12 別解 (与式)= =2(8-2)=12 266 (1) 方程式 x(x-3)²=0を解くと x=0.3 グラフは右の図のように なり 0x3y≧0 0 3 よって, 求める面積Sは S=Soxx-3)2dx=f(x) (x3-6x2+9x)dx 9 --+--+- 81 27 == -54+ 2 4 267 (1) 曲線と直線の交点の座標は、 (1) S(2x³- 3-5x2+3)dx (2) S(-x+3x2+6x-1)dx □ 練習 266 次の曲線とx軸で囲まれた部分の面積Sを求めよ。 (2) y=x(x2-4) (1) y=x(x-3)2 (1) y=x-3x,y=-2x 練習 267 次の曲線または直線で囲まれた部分の面積Sを求めよ。 (2) y=x-2x2,y=x2+6x-8 (2) 方程式(x2-4)=0 y を解くと x=-2,0,2 グラフは右の図のよう になり 2xy≧0, 0≦x≦2yMO よって, 求める面積Sは x+Sol- ( -x3+4x)dx =[2]+[ +2 ] =-(4-8)+(-4+8)=8 [参考] y=x(x2-4) のグラフは原点に関して対称 s=5,xx2-4)dx+ {-x(x2-4)}dx =S(-4x)dx+S(- であるから,S=2x2-4)dx としてもよ い。 J-2 x-3x=-2xの解である。 式を整理してxx=0 よって ゆえに (x+1xx-1)=0 x = 0. ±1 グラフは図のように なり -141407 x³-3x-2x 201 x3-3x≤-2x よって, 求める面積Sは s=${(x-3x)-(-2x)dx +(-2x)-(x³-3x)dx =S°(x_x)dx+S^(-x'+x)dx ++ ●演習問題の解答 1 ■考え方 どの文字に のいずれた 1 (与式)= 2つの曲線の共有点のx座標は、方程式 x3-2x2=x2+6x-8の解である。 式を整理して3-3x2-6x + 8 = 0 よって (x-1)(x²-2x-8)=0 (x-1)(x+2)(x-4)=0 ゆえに 2, 1, 4ストー グラフは右の図のよう になり -2≤x≤1T x3-2x2x2+6x-8 1≦x≦4で 2xx2+6x-8 よって, 求める面積Sは -20 =-3(6 =-3(b =-3( =-3 -3a (2) (与 =(b S=S^_^{(x_2x2)-(x2+6x-8)}dx +S, {(x²+6x−8)—(x³—2x²))dx =(x³-3x²-6x+8)dx +S(-x+3x²+6x-8)dx x3-3x2+8x = 2 781

未解決 回答数: 0
数学 高校生

(2)を解くとき、何から始めれば良いか分からなくて解けません。どんな思考回路で解けば良いですか?

CER FACITY 134 漸化式の応用 平面上にn本の直線があって,どの2本も平行でなく,どの3 本も1点で変わらないとき、これらの直線によって平面がan個 の部分に分けられるとする. (1) α1, a2, as を求めよ. (2) n本の直線が引いてあり, あらたに (n+1) 本目の直線を引 いたとき、もとのn本の直線と何か所で交わるか. (3) (2)を利用して, an+1 を an で表せ (4) an を求めよ. 精講 まず設問の意味を正しくとらえないといけません. nが含まれて いるとわかりにくいので,nに具体的な数字を代入してイメージを つかむことが大切で,これが(1)です. (3)が最大のテーマです。 「an+をαで表せ」という要求のときに, 41, a2 α などから様子を探るのも1つの手ですが,それは137以降 (数学的帰納法)に まかせることにします。ここでは,一般に考えるときにはどのように考えるか を学習します。 nant の違いは直線の本数が1本増えることです. 線と サト 大点によって,(n+1)本目の直線は,2つ ある直 の半直線と (n-1) 個の線分に分割されている (下図).. ② ③ ① 1本目 (n+1) (n+1)本目の直線 A 2本目3本目 この(n+1) 個の半直線と線分の1つによって、いままで1つであ った平面が2つに分割される. よって, (n+1) 本目の直線によって, 平面の部分は (n+1) 個増える ことになる. 本目 (4)n≧2のとき, an+1=an+n+1 (n≧1) f(n)の形やで 階差数列 (123 n-1 an=a1+(k+1)=2+2+3+..+n) k=1 =(1+2+…+n)+1-1/2n(n+1)+1/12 (2) これは, n=1のときも含む. 吟味を忘れずに ポイント 直線の数が増えれば分割される平面が増えることは想像がつきますが,問題 はいくつ増えるかで,これを考えるために(2)があります. 漸化式を作るとき, n番目の状態を既知として, (n+1) 番目の状態を考え、その変化を追う 解答 (1) (a₁) (a2) (a3) 第7章 ② ④ 27 ⑤ ③ 演習問題 134 ④ 右図のように円 01,02, 直線 ・は互いに接し、かつ点Cで交わる半 に内接している。このとき、次の問いに答えよ. 12 図より, a1=2 図より, a2=4 図より α3=7 (2) すべての直線は,どの2本も平行でなく,どの3本も1点で交わら ないので, (n+1) 本目の直線は,それ以前に引いてあるn本の直線の すべてと1回ずつ交わっている。 よって、nが所で交わる (1)円の半径が5CA の長さが12で あるとき,円の半径 12 を求めよ. (2)番目の円の半径を1とすると (2) きっと+1の関係式を求めよ. 02 -11 A2 Al

回答募集中 回答数: 0