学年

教科

質問の種類

数学 高校生

数学Aの問題です。DGの中点Hは▲BDGの外心である。というところが理解できないです。なぜ外心になるのですか?よろしくお願いします。

138 (1)円と直線に関する次の定理を考える。 3点P,Q,R は一直線上にこの順に並んでいるとし,点Tはこの 定理 直線上にないものとする。 このとき, PQ・PR=PT2 が成り立つな らば、直線PT は 3 点 Q,R, T を通る円に接する。 この定理が成り立つことは,次のように説明できる。 直線 PT は 3点 Q,R,Tを通る円0に接しないとする。このとき,直線 PT は円Oと異なる2点で交わる。直線 PT と円0との交点で点Tとは異なる点 を T' とすると, PT・PT'= イが成り立つ。 点と点T' が異な ることにより, PT・PT' の値と PT2の値は異なる。 したがって, PQ・PR=PT2に矛盾するので,背理法により,直線 PT は3点 Q,R, T を通る円に接するといえる。 ア イ の解答群(解答の順序は問わない) PQ ①PR 2 QR 3 QT ④RT (2)△ABCにおいて,AB= BC= AC=1 とする。 3 4 ウ このとき,∠ABC の二等分線と辺 AC との交点をDとすると,AD= I である。 直線 BC 上に, 点Cとは異なり, BC=BE となる点Eをとる。 数学A AC ∠ABE の二等分線と線分AE との交点をFとし、直線ACとの交点をGとす オ △ABFの面積 キ ると, である。 AG カ △AFGの面積 ク ケ 線分 DG の中点をHとすると, BH= である。 また, AH= コ シ’ A ス CH= である。 セ △ABCの外心をOとする。 △ABCの外接円0の半径が ることから、線分BH を 1:2に内分する点をI とすると IO= [ト ナ] であることがわかる。 ニヌ タチ であ [22 共通テスト追試] SAL

回答募集中 回答数: 0
数学 高校生

三角関数の問題です。 赤く囲んだところが分かりません。 よろしくお願いします。

63 図形の計量と加法定理の利用 三角形ABCにおいて, AC=3, ∠B=z, <C=8-7 とする。ただし, 0 は cos0=- << を満たす角とする。 (1) sin= であり, 8についての不等式が成り立つ。 ウの解答群 © <<* ① ②くく ③ << (2) sin ∠C= であり、AB=キ+√ク] である。 [ (3)辺BC上に, BAD 120 となるように点D をとることができる。このとき、 ケコ + サ AD= である。ただし、コシ とする。 各 (1)<6πより, sin0 0 であるから sin 0 = √1-cos² = √1-(-3)=√ 0 √2 sin-sin-sin = 2 1 2 2 24 sin= ....... ① 6 = sin-27- ...... ② 6 ① ④ 3 √18 sin -π= ..... ③ 6 -1 10 sin1 = ......④ <Point 大小関係は②>①>③>であるから / <<1/2(①) (2) 加法定理により sin ∠C = sin 0- sin(0-3) sincosmo-cos sin / B /6 = △ABCにおいて, 正弦定理により AB AC in (0-1) AB sinc 3 3+√6 6 2 3+√6 AB = 6• O <-114- 2 J2 こう解く! LLA STEP 不等式から問題解決のための 1 構想を立てよう ①~③で与えられている角を 正弦の値に置き換えて比較す る。 STEP 図をかいて、適切な定理を用 ②いよう 与えられた条件を図で表すと, 向かい合う辺と角が2組ある ことに気づくだろう。 このよう なときは, 正弦定理を用いる とよい。 A 分母を6にそろえて比較する。 B 加法定理 sin (a-B) =sinacos β-cosasinβ C 角度の情報が多い三角形に対し ては、 正弦定理を用いるのが有 効である。 9+3x

回答募集中 回答数: 0
数学 高校生

(2)の解き方を教えてください😫答えは2です💦

[2] △ABCにおいて, BC = α, CA = 6, AB =c, ∠A=A, ∠B=B, 2つの等式 bcos B = ccosC•••• ①, bsin B=csinC ......② がそれぞれ成り立つとき,△ABCはどのような形状であるかを考察する。 等式①についての考察・ 余弦定理を用いて, cos B を a, b, c を用いて表すと, cosB= ( である。 COS C についても同様に α, b, c を用いて表し、 ①に代入して式変形すると (A) って (イ) または (ウ) が得られる。 (イ) のとき,△ABCは二等辺三角形であり, (ウ) のとき, △ABC は直角三角 形である。 等式②についての考察 正弦定理を用いて、 ②を辺の長さの関係式にすると,△ABCの形状がわかる。 以上により, △ABCにおいて,等式①が成り立つことは等式 ②が成り立つための をα, b c を用いて正しくうめよ。 (1Xi) (茸) (イ) で答えよ。 (エ) 。 (ウ) に当てはまるものを、次の1~6のうちから一つずつ選び,番号 1 a=b 4a+b2=2 2b=c 562+2=d2 c=a 6 c²+a²= b² また、 (A)に入る (イ) (ウ) を求める過程を(A)の解答欄に記述せよ。 (3) に当てはまるものを,次の1~4のうちから一つ選び、番号で答えよ。 1 必要十分条件である 2 必要条件であるが,十分条件ではない 3 十分条件であるが, 必要条件ではない 4 必要条件でも十分条件でもない (配点 10)

回答募集中 回答数: 0
数学 高校生

緑のマーカーの条件がどこに書いてあるかわからないです💦

B2 [1] ∠BAC が鈍角の ABCがあり、 10√2 である。 (1) sin ∠BAC の値を求めよ。 (2) 辺 CA の中点をMとするとき, 線分 BMの長さを求めよ。 また, △ABM の外接円の 半径を求めよ。 (配点 10 ) [2] △ABCにおいて, BC = 4, CA = b, AB = c, ∠A=A, ∠B=B, ∠C=C とする。 2つの等式 bcos B=ccosC・• ①, bsin B=csin C ...... ② がそれぞれ成り立つとき, △ABCはどのような形状であるかを考察する。 等式①についての考察 余弦定理を用いて, cos B を a, b, c を用いて表すと, cosB= 5 である。 COS C についても同様に a, b, c を用いて表し、 ① に代入して式変形すると (A) って (イ) または (ウ) が得られる。 (イ) のとき,△ABCは二等辺三角形であり, (ウ) のとき, △ABCは直角三角 形である。 等式②についての考察 正弦定理を用いて, ②を辺の長さの関係式にすると,△ABCの形状がわかる。 以上により, △ABCにおいて, 等式①が成り立つことは等式 ②が成り立つための (エ) (1Xi) ( を a, b, c を用いて正しくうめよ。 (イ) (ウ) に当てはまるものを,次の1~6のうちから一つずつ選び、番号 で答えよ。 1 a=b 4 a²+b² = c² 2b=c 562+2=12 3 c=a 6 c²+a²= b² また、 (A)に入る (イ) (ウ) を求める過程を(A)の解答欄に記述せよ。 (2) (エ) に当てはまるものを,次の1~4のうちから一つ選び, 番号で答えよ。 1 必要十分条件である 3 十分条件であるが, 必要条件ではない 4 必要条件でも十分条件でもない 2 必要条件であるが,十分条件ではない (配点 10)

回答募集中 回答数: 0
数学 高校生

2番の問題でなぜタンジェントを求めてるんですか?

258 基本例 例題 157 三角形の辺と角の大小 : 000 △ABCにおいて, sin Asin B:sinC=√7:√31が成り立つとき △ABCの内角のうち、最も大きい角の大きさを求めよ。 △ABCの内角のうち, 2番目に大きい角の正接を求めよ。 三角 p.248 基本事項園 の1つ 指針 (1) 正弦定理より, α: b:c=sinA: sin B: sin C が成り立つ。 これと与えられた等式から最大辺がどれかわかる。 基本例 1 AB=2, BC = (1)xのとり (2) AABC, 三角形の辺と角の大小関係より, 最大辺の対角が最大角 a<b⇔ A<B a=b A=B a>b⇔A>B であるから、3辺の比に注目し, 余弦定理を利用。 指針 (2) まず, 2番目に大きい角のcos を求め, 関係式 1+tan20=- 三角形の2辺の大小関係は,その対角の大小関係に一致する。) B (1) 三 (2) ここ 角 1 COS20 を利用。 例 C b により a (1) 正弦定理 解答 sin B sin C sin A a:b:c=sinA: sin B: sin C これと与えられた等式から よって、 ある正の数んを用いて ...... (*) 01- ak b√√3kk cos A= 2.√3k.k よって、 最大の角の大きさは 大の色である。 余弦定理により (√3k)2+k-√7k)2 と表される。ゆえに、が最大の辺であるから,4が最k を正の数として a:b:c=√7:13:1 sin A sin B ||a:b=sinA b C a b sin B SinC から b:c=sinB:si 合わせると(*)とい 解答 (1) よ (2) [ -008-288-CLA b C √3 1 とおくと -3k2 √3 2√3k2 2 A=150° (2)(1) から2番目に大きい角はBである。 k2+√7k2-(√3k)2 Fa=√7k, b=√1 c=k= abcからA よって,Aが最大の ある。 余弦定理により 203 A 5k² cos B= 2.k.√7k 275 k √3 2√7 01 B √7k 1 等式 1+tan2 B= から cos2 B tan2B= cos² B 5 1=(2/7)-1 28 001- 320- i-1= 25 25 A> 90° より B <90°であるから 5 3 V 25 tan B> 0 したがって tan B= 5 練習 △ABCにおいて 8 7 ② 157 sin A sin Basin C が成り立つとき √√3 = ■三角比の相互関係。 (p.238 例題 144 参 DARD (1)の結果を利用。 △ABC は鈍角三角形 (1)△ABCの内角のうち、2番目に大きい角の大きさを求めよ。 (2)△ABCの内角のうち、最も小さい角の正接を求めよ。 [類 愛知工 | 練習 ③ 15

未解決 回答数: 0