学年

教科

質問の種類

数学 高校生

92. 答えは合っているのですが、(文字を具体的な数字に書き換えて解き方を考えたので)うまく記述文は書けませんでした。仮にこれが記述問題だとしたら何割くらいの得点になりますか??

R 1 減少 重要 例題 92 既約分数の和 00000 pは素数m,nは正の整数でm<nとする。mとnの間にあって, pを分母と する既約分数の総和を求めよ。 $1=1 61=-5 7+58r 指針▷既約分数の和→全体の和から整数の和を除くという方針で求める。 まず,具体的な値で考えてみよう。 例えば,2と5の間にあって3を分母とする分数は 11 8 9 10 7 3'3' 3'3' (*) 解答 であり、既約分数の和は(*)の和から3と4を引くことで求められる。 このことを一般化すればよい。 gを自然数として, m<g p ① のうち、 - pn-pm-1 2 9 12 13 3, 3 pm<g<pnであるから g=pm+1,pm+2, よって 9_pm+1 pm+2 Þ þ P これらの和をS とすると これらの和を S2 とすると S2= が整数となるもの _=m+1,m+2, -< n を満たす 14 3' 3 n-m-1 2 -(m+n) S= (+ 24288 Les ass (n-1)-(m+1)+1 2 159), arc -(m+n) p S=(pn-1)-(pm+1)+1(om+1.pn-1)S=1/2"(a+1) SODUL P ...... pn-1 n-1 を求める ………, pn-1 -{(m+1)+(n-1)} 【同志社大] 1/2 (m+n){(n−m)p−(n−m)} 1/12(m+n)(n-m)(b-1) ゆえに 求める総和をSとすると, S=S-S2 であるから pn-pm-¹ (m+n)_n_m−¹(m+n) 2 2 (*)は等差数列であり、3と4は 2と5の間にある整数である。 「とんの間」であるから, 両端のとnは含まない。 < 初項 基本 89,90 pm+1 か 公差 1 等差数列。 GROER) 45.= n(a+1) mとnの間にある整数。 (全体の和) (整数の和) 523 3章 12 等差数列 委 Ja に

回答募集中 回答数: 0
数学 高校生

第2問(2)のコサシスセソについてです。 2枚目の解答の波線部分がよく分からないので、分かる方がいらっしゃったら教えて頂きたいです🙇‍♀️

第2問~第4問は、いずれか2問を選択し、 解答しなさい。 第2問 選択問題 (配点20) 図1のように、東西南北に作られた碁盤の目状の道路があり、交差点と交差 点の間の1区画の距離は1km である。 0° 0 が対応している。 .P 北 図1 地点Oから地点P までの最短経路について考えてみよう。 東に1区画進むことを「→」,北に1区画進むことを「↑」と表すことにすると 一つの最短経路に対して、「→」3個 「1」 3個の並べ方が一つ対応するので最 短経路の総数はアイ通りと求められる。 東 西 最短経路の距離は6km であるが,初めて地点Pに到達するまでの距離が8km になるような経路の総数はいくつになるだろうか。 ただし, 図1の道路のみを移 動し、交差点以外の場所で進む方向を変えないこととする。 例えば、距離が8km になるような経路には図2、図3のような場合がある。 P P 南 図2 図3 西に1区画進むことを 「←」 南に1区画進むことを「↓」と表すことにし, 経 路に対応した←↑↓の順列を道順ということにすると 図2の経路には, 道順→↑←↑→→→↑ 図3の経路には, 道順 →↑↑→↓→↑↑ (第6回3) (数学Ⅰ・数学A 第2問は次ページに続く。) (1) ↑↓の順列には対応する経路が存在しないものも含まれる。 例えば、道 には対応する経路がない。 ウ 順 HO I と する。 I nom O ② ↑↑↑↓→→1③→→→1→1-1- の解答群 (解答の順序は問わない。) オ ↑→↓→↑↑↑ 2017 (2) 図2のように, 「←」 が含まれるような道順の総数を考える。ただし、例えば, 道順が→→→↑↑↑← → のように最短経路で地点Pに到達した後、1kmの区 仕復して再び地点Pに到達する経路も含めて考える。 」か「↑」 が3個の順列が一つ対応 一つの経路には、「 T20 2015 40ATEMONEY (1) での考察から 「→」が4個, 「←」 が1個の5個については、 並びにオ という制約があるので,「→」が4個,「←」が1個の5個の並び方は カ 通りある。 $33458200% AS これに 「↑」を含めた8個を並べると, 「←」が含まれる道順の総数はキクケ 通りある。 同様に考えると、図3のように,「↓」が含まれる道順の総数はコサシ 通 01030943-1 りある。 したがって 初めて地点Pに到達するまでの距離が8km になるような経路 の総数はスセソ 通りと求められる。 ① tttt→→ の解答群 + は左端にのみ並ばない 「←」は左端にも右端にも並ばない (第6回4) JUTUSA ① 「←」は右端にのみ並ばない

回答募集中 回答数: 0
数学 高校生

175.2.3 答えを導くまでの記述に問題はないですよね?

したもの 点のx座 すると、 5 x=-1 gcb gea loga.M+I x=1 から ニ t 基本例題 175 対数の大小比較 | 次の各組の数の大小を不等号を用いて表せ。 (1) 1.5, 10g35 点のx座標 ALUMIST 指針 対数の大小比較では, 次の対数関数の性質を利用する。 a>1©¢\0<p<q⇒loga p<loga q 大小一致 0<a<1のとき 0<p<glogp>logag 大小反対 (不等号の向きが変わる ) まず異なる底はそろえることから始める。 (1) 小数 1.5 を分数に直し, 底を3とする対数で表す。 (2) 210g49を底を2とする対数で表す。 係をいた 【CHART 対数の大小 底をそろえて 真数を比較 解答 (2) 2, log49, log25 (3) logo.53, logo.52, log32, log52 p.273 基本事項 ② 貸付 (3) (3) 4数を正の数と負の数に分けてから比較する。 また, 10g32, 10g52の比較では, 真数がともに2であるから, 底を2にそろえると考えやすい。 (1) 1.5=2=log:3=log:31 ** (31)²-3¹-27>5² また 底3は1より大きく35であるから log332>log3 5 したがって 1.5 >log35 (2) 22102210g222=10g24, log49= 底2は1より大きく, 3 <4<5であるから log23 <1024 <1025 すなわち 10g9<2<log25 0.5は1より小さく, 3>2>1 であるから logo.53 <logo.52 < 0 log52= 1 log32= log23 1 <3 < 5 であるから よって すなわち したがって 0 log25 log23² 10222 -=10g23 0<log23<log25 1 1 log25 10g23 練習 2175 (1) 10g23, 10g25 logaq 1 logapty 0 0<log52<log32 logo.53<logo.52 <logs 2 <log:2 で, 底2は1より大きく, S YA a>1 次の各組の数の大小を不等号を用いて表せ。 (2) 10go.33, 10go.35 p 00000 y=logaxのグラフ gx y 0<a<1 10gap OP logag Syz 底はそろえよ <A> 0, B>0ならば A>B⇒A²>B² 底の変換公式。 9 不等号の向きが変わる。 <指針のy=logaxのグラフ から, α>1のとき 0<x<1⇔logax < 0 x>1⇔10gax>0 0<a<1のとき 0<x<1⇔10gax>0 x>1⇔logax < 0 p.293 EX113 (3) logo.54, log24, log34 x 275 5章 31 対数関数

回答募集中 回答数: 0
数学 高校生

囲った部分なぜ、式が変わるのか理解できません。 2k-1と2’k-1のやつです。

1 2 ZZZ 初項から第210項までの和を求めよ。 解答 指針 分母が変わるところで区切りを入れて,群数列として考える。 分母: 1|22|3, 3, 34, 4, 4,4|5, 1個 2個 3個 4個 第n群には、分母がnの分数がn個あることがわかる。 分子: 12,3|4,5,67, 8, 9, 10|11 分子は,初項 1,公差1の等差数列である。 すなわち,もとの数列の項数と分子 は等しい。 まず,第 210 項は第何群の何番目の数であるかを調べる。 分母が等しいものを群として,次のように区切って考える。 8 9 67 5 10|11 1 | 2 34 12'23'3' 3 4'4'4' 5 第1群から第n群までの項数は 1+2+3+ ・・・・..+n= n(n+1) =1/√n(n²+1)÷n=² n²+1 2 第210項が第n群に含まれるとすると (n-1)n <210≤ n(n+1) よって (n-1)n<420≦n(n+1) (n-1)n は単調に増加し, 19・20=380, 20・21=420 である から ① を満たす自然数nは n=20UH また,第 210 項は分母が 20 である分数のうちで最後の数 1/2 ・・20・21=210 である。 ここで,第n群に含まれるすべての数の和は 1/27 12.11/2n(n-1)+1}+(n-1)・1) ÷n ゆえに, 求める和は 20k2+1 20 2+¹ -12 +21)-(20-21-41 +20) ²² k=1 2\k=1 .=1445 k=1 [類 東北学院大 ] ...... 練習の累康を分母とする既約分数を,次のように並べた数列 ③ 30 13 2'4'4'8' 8 8 768.1/16 3 5 う " 16'16'16' について、第1項から第100項までの和を求めよ。 1 3 5 いて、 もとの数列の第k項 分子がんである。ま 群は分母が 個の数を含む。 これから第n群の の数の分子は、 n(n+1) は第群の数の分 子の和→ 等差数列の n{2a+(n-1)d} 15 1 16' 32 【類岩手大】 P.460 EX 自然委 (1) 大 料 (2) 1 る 指針

回答募集中 回答数: 0
数学 高校生

これ方程式を解いた答えとグラフが方程式を満たすxの値ってどうして一致するんですか?

基本例 3 分数関数のグラフと直線の共有点,分数不等式 (1) 関数 y= 2 (2) 不等式 指針 (1) 解答 x+3 のグラフと直線y=x+4の共有点の座標を求めよ。 <x+4 を解け。 2 x+3 y= 共有点実数解 すなわち、分数関数の式と直線の式からyを消去した 2 x+3 方程式 (2) 不等式 f(x) <g(x) の解 ⇔y=f(x) のグラフがy=g(x)のグラフより下側にあ るようなxの値の範囲 2 x+3 (1) ①, ② から =x+4の実数解が共有点のx座標である。 ①, y=x+4 グラフを利用して解を求める。 なお,分数式を含む方程式・不等式を 分数方程式・分数不等式 という。分数方程式・ 分数不等式では,(分母)≠0) というかくれた条件にも注意が必要である。 CHART 分数不等式の解グラフの上下関係から判断 2 x+3 両辺に x+3を掛けて =x+4 2=(x+4)(x+3) 整理して x2+7x+10=0 ゆえに (x+2)(x+5)=0 よって ②から ② とする。 x=-2,-5 x=-2のときy=2, x=-5のときy=-1 したがって, 共有点の座標は (2) 関数 ① のグラフが直線 ② の 下側にあるようなxの値の範 囲は,右の図から -5<x<-3, -2<x 注意 グラフを利用しないで,代 数的に解くこともできる。この 方法は次ページで学習する。 -4 -5 1 YA -3 -20 4 2 基本 1 y=g(x) (-2,2), (-5, -1) (1) y X y=f(x) 5 <yを消去。 2次方程式に帰着される [ただし, (分母)≠0 す なわち x≠-3という条 件がかくれている]。 x=-2. -5は 2 x+3 分母を0としないから、 方程式 2 x+3 解である。 (1) のグラフを利用。 =x+4の の共有点の座標を求めよ。 1 章 ① 分数関数・無理関数 <xキー3に要注意! x=-3 は, 関数 ① の定 義域に含まれない (つま り, グラフが存在しない)。

回答募集中 回答数: 0