学年

教科

質問の種類

数学 高校生

この赤線部の式がどこからきたのかと、青線部でそれぞれの分散を足してる理由がわからないので教えてください🙇‍♀️🙇‍♀️

5章 21 し,標準偏 らばりの 基本事項 は 計算 きいことの 基本 例題 ・・2つのデータを合わせる ある集団はAとBの2つのグループで構成さ 20 グループ 個数 平均値 分散 A 16 24 B 60 12 28 れている。 データを集計したところ,それぞれ のグループの個数, 平均値, 分散は右の表のよ うになった。このとき, 集団全体の平均値と分散を求めよ。 指針 データ X1,X2, ·····, Xの平均値を x, 分散をs.2 とすると, (A) 8x=x-() [立命館大 ] 基本 177 が成り立つ。 公式を利用して,まず, それぞれのデータの2乗の総和を求め、 再度 公式 を適用すれば、集団全体の分散は求められる。 281 この方針で求める際、それぞれのデータの値を文字で表すと考えやすい。 下の解答では, A,Bのデータの値をそれぞれx, x2, X20i, Ja,.., Yao として考えている。 なお、慣れてきたら,データの値を文字などで表さずに、別解のようにして求めてもよい。 解答 分散と標準偏差、相関係数 20×16 +60×12 集団全体の平均値は =13 20+60 集団全体の総和は20×16 +60×12 ともに整数。 またBの変量をyとし, データの値を y1,y2, ......, y6o とする。 5)²} 広い。 -6)2} Aの変量をxとし,データの値を X1,X2, .....,X20 とする。 のデータの平均値をそれぞれx,yとし,分散をそれぞれ sx', sy2 とする。 =x(x)2より, x2 =sx2+(x)' であるから x²+x2+......+X202=20×(24+162)=160×35 sy'=y(v)' より,y=s,' + (y)' であるから y2+y22+....+y6o=60×(28+122)=240×43 1 x²= 20 -X20²) よい。 =5.0625 25.29 よって、集団全体の分散は 1 20+60 集団全体の平均値は13 (x12+x22+. ...... +X202 +y12+y22+・・・・・・ +yso2)-132 160×35 +240×43 131. -169=30 80 なけれ 簡単 別室 集団全体の平均値は 20×16 +60×12 20+60 =13 数 3工場 0 1 2 6 8 13 30 Aのデータの2乗の平均値は 24+ 16°であり,Bのデータの2乗の平均値は28+12%で あるから、集団全体の分散は 20×(24+162) +60×(28+122) 160×35 +240×43 -132= -169=30 80 20+60 練習 12個のデータがある。 そのうちの6個のデータの平均値は4, 標準偏差は3であ 178 残りの6個のデータの平均値は8,標準偏差は5である。 (1) 全体の平均値を求めよ。 (2) 全体の分散を求めよ。 [広島工大 ] Op.292 EX128

回答募集中 回答数: 0
数学 高校生

1枚目の?下線部がよく分かりません。右の丸で囲んである部分も同じような内容が書かれているのですがよく分からず… 私は2枚目のように解きました。私とやっていることは理屈は同じなのでしょうか?

基本 例題 10 支払いに関する場合の数 あの①①① 000 1500円,100円 10円の3種類の硬貨がたくさんある。 この3種類の硬貨を使っ て,1200円を支払う方法は何通りあるか。 ただし, 使わない硬貨があってもよい ものとする。 指針支払いに使う硬貨 500円 100円 10円の枚数をそれぞれx, y, z とすると 解答 500x+100y+10z=1200 (x,y,zは0以上の整数) この解 (x, y, z) の個数を求める。 からxの値を絞り、場合分けをする。 ~ 金額が最も大きい500円の枚数xで場合分けすると, 分け方が少なくてすむ。 支払いに使う500円,100円 10円硬貨の枚数をそれぞれx, y, 基本7 とすると,x, y, zは0以上の整数で 500x+100y+10z = 1200 すなわち 50x +10y+z=120 ゆえに 50x=120-(10y+z) 120 よって 5x≤12 不定方程式 (p.515~)。 Ay≥0, z≥0 75345 xは0以上の整数であるから [1] x=2のとき x=0.1.2 10y+z=20 この等式を満たす0以上の整数 y, zの組は (y, z=2,0),(1,10), (0,20)の3通り。 [2] x=1のとき 10y+z=70 この等式を満たす0以上の整数 y, zの組は (y,z)=(70) (6, 10), ...... (070) の8通り。 [3] x=0のとき 10y+z=120 この等式を満たす0以上の整数 y, zの組は ( (y, z)=(12,0), 11, 10), ..., (0, 120)の13通り。 [1] [2] [3] の場合は同時には起こらないから求める場合の 数は る P3+8+13=24 (通り) 50x≤120 これを満た す0以上の整数を求める。 110y=20-z≦20から 10y 20 すなわち y≦2 よってy=0, 1, 2 10y=70-z70から 10y≦70 すなわち y≦7 よって y=0, 1, …, 7 10y=120-z120から 10y≦120 すなわち y≦12 ., 12 よって y=0, 1, ... (S) 和の法則 31 311 1章 2 合の数

回答募集中 回答数: 0