学年

教科

質問の種類

数学 高校生

多項式の除法です。 2xの2乗をX-3で割ることはできないから、-7Xの上に2Xじゃないのでしょうか??

15 10 20 25 5 15 20 5 10 3| 多項式の除法 これまでは, 多項式について,加法,減法,乗法を考えてきた。ここで は, 多項式の除法を考えてみよう。 .81 + =A 整数について,余りを考慮した除法を考えた。 多項式についても、余り を考慮した除法を考えることができる。 まず, 整数の除法を振り返ろう。 例えば,172を7で割ると商は 24, 余りは 4である。 このとき 172 = 7×24 + 4 ← 割る数 × 商 + 余り である。 同じような計算を多項式で行うこと を考えてみよう。 例8 注意 1節多項式の乗法・除法と分数式 問14 2x-1 x-32x²2-7x+5 2x² - 6x 24 7)172 ・(x-3) ×2x 140・・・ 32 ・7×20 多項式 A=2x²-7x+5, 多項式 B=x-3のとき, AをBで 割る計算は次のように考える。 -x+5 -x+3. (x-3) × (-1) 2 28・・・ 4 7x4 最後の行に現れた2は, 割る式x-3よりも次数が低いから, これ以上計算を続けることはできない。 このとき, AをBで割ったときの商は2x-1, 余りは2である という。 上の計算から、 次の式が成り立つことが分かる。 A =Bx (2x-1)+2 割式x+余り ① このような計算では,割る式も割られる式も, 文字xについて降べきの順に整 理しておくとよい。 多項式 3x²+2x+1を多項式3x-4で割り, 商と余りを求めよ。 また、例8にならって, 多項式3x²+2x+1 を ① の形に表せ。 13 1章 章 方程式・式と証明

回答募集中 回答数: 0
数学 高校生

2枚目を1枚目と同じように計算できるんではないかと思いしたんですが、(3枚目)違いました 考え方はあっている?のになぜ1枚目のような方法で解けないのですか?

304 基本例題 47 対戦ゲームの優勝確率 あるゲームでAチームがBチームに勝つ確率は 22, BチームがAチーム 勝つ確率は 1 であるとする。 A,Bがゲームをし, 先に4ゲームを勝って ームを優勝とする。 (1) 4ゲーム目で優勝チームが決まる確率を求めよ。 (②2) 7ゲーム目で優勝チームが決まる確率を求めよ。 CHART O OLUTION > n回目で決着 (n-1) 回目までに着目 ...... (②2) Aが4勝3敗で優勝する確率を C (1/2)^(1-12/2) 7C4 解答 (1) 4ゲーム目で優勝チームが決まるのは, AチームまたはB チームが4連勝する場合であり,これらは互いに排反である。 よって、求める確率は (23) 2+(4)-47 = (2)[1] 7ゲーム目でAチームが優勝する場合 6ゲーム目までにAチームが3勝し, 7ゲーム目にAチー すぐにこの思想になることが大事!! ムが勝つときであるから, その確率は *C. ( 13 ) *( ² ) ² × ² / - としては誤り! は7ゲーム目までにAが4勝する確率であり,例えば,Aが4連勝した後 で3連敗する場合も含まれている(この場合は4ゲーム目で優勝が決まる)。 7ゲーム目で優勝が決まるから, 6ゲーム目までにAが3勝し7ゲーム目に Aが勝つ確率を求めなければならない。 B が優勝する場合も同様。 4023 3×36 + 240 3 3 [2] 7ゲーム目でBチームが優勝する場合 23 合 13 + 23 [1] と同様にして [1], [2] は互いに排反であるから、求める確率は 20 23 23 160 3 -X36=20x 36 729 ..(1/)(///x1/13-28x72 C$ ( 1 ) * ( ²3 ) * - - - * 20 23 重要例 右の図のよう ある。 地点 て地点B Ip.298 基本事項、基本品 X 確率を求め 北に行くか 確率で CHART C 最短 求め これ 本問 AT A,Bのどちらが優勝し てもよい。 確率の加法定理。 ▪nCrp" (1-p)"- 6ゲーム目までにBが3 勝し,7ゲーム目にBが 勝つ場合。 確率の加法定理。 A 解答 右の図の る。Pを があり, [1] 道 この石 PRACTICE・・・ 47③ A, B の2人があるゲームを繰り返し行う。 1回のゲームでAがB であるとする。 に勝つ確率は 1/23,BがAに勝つ確率は (1) 先に3回勝った者を優勝とするとき, Aが優勝する確率を求めよ。 ((2) 一方の勝った回数が他方の勝った回数より2回多くなった時点で勝った回数の多 い者を優勝とするとき, 4回目までにAの優勝する確率を求めよ。 [2] 道 この よっ PR

回答募集中 回答数: 0