学年

教科

質問の種類

数学 高校生

(2)の最後の問題で、答えが何故10になるのかが分かりません(´・ω・`)

47 難易度 目標解答時間 15分 SELECT 9060 花子さんの住んでいる町内で毎年行われているクリスマス会では,参加者全員にスナック菓子 一袋ずつ配ることになっている。 今年は、花子さんがスナック菓子を買うことになり、1年前のク マス会を知っている人に話を聞いた。 1年前は、参加者は30人で, スナック菓子は, 3袋入りの箱と7袋入りの箱の2種類で売られて 3袋入りをa箱,7袋入りを6箱買うと,30人全員に1袋ずつ残さず配ることができたという。た a,b はともに0以上の整数とする。 このことから 3a+7b= アイ ...1 オ), カ が成り立ち, ①を満たすa, bの組(a, b) は, (a,b)=(ウエ 組だけ存在する。 (1) 花子さんは,参加者が何人であれば, 3袋入りと7袋入りの箱をうまく組み合わせて買うこと スナック菓子を参加者全員に1袋ずつ残さず配ることができるかに興味をもった。 参加者全員 袋ずつ残さず配ることができない場合について考えよう。 3袋入りをx, 7袋入りを箱買うとする。 ただし, x,yはともに0以上の整数とする。 (i)yが3の倍数のとき, y = 31 (10以上の整数)と表すと 3x+7y=ク (x+ケ 1) であり, 3x+7y と表される数は コ 以上の3の倍数すべてである。 (ii)yを3で割った余りが1のとき、y=3l+1 (Zは0以上の整数)と表すと (ただし, t + (x+ 1+ ス + サ 3x+7y= であり, 3x+7yと表される数は3で割った余りがソである整数のうち, すべてである。 233119 (yを3で割った余りが2のとき, (i), (ii) と同様に考えると, 3x+7y と表される数は3で た余りがチである整数のうち,ツテ 以上のものすべてである。 (i) ~ (i)より, 3x+7y (x, y はともに0以上の整数) と表されない自然数は全部でト個ある すなわち, 3袋入りと7袋入りの箱をどのような組み合わせで買ったとしても、参加者全員 袋ずつ残さず配ることができない参加人数は全部でト |通りある。 (2) 今年は別のスナック菓子を買うことにした。 そのスナック菓子は2袋入りの箱5袋入りの セ タ 以上の 2種類が売られており, 中身のパッケージのデザインも異なっていたため、クリスマス会を げるため, 2袋入り 5袋入りのどちらも1箱以上買うことになった。 このとき2袋入りと5袋入りの箱をどのような組み合わせで買ったとしても、スナック菓 参加者全員に1袋ずつ残さず配ることができない最大の参加人数はナニ人である。 (配点 公式解法 7 する L と 0 [C] G

回答募集中 回答数: 0