学年

教科

質問の種類

数学 高校生

格子点の求め方が解説を読んでも分からなかったので教えて頂きたいです。存在範囲の頂点の所までは理解出来たのですが。直線y=xに平行で辺りからの説明が分からなくなってしまいました。

総合を正の整数とする。 右の連立不等式を満たす xyz空間の点P(x,y,z) 28 で、x,y,zがすべて整数であるもの (格子点)の個数をf(n) とする。 極限 f(n) を求めよ。 na lim n→∞ z=k(kは整数) とすると, 連立不等式から k-n≦x+y≦n-k かつ x+y=n-k x+y=k-n -k-n≤x-y≤n+k (x,y,z) が存在するためには k-n≦n-k かつ -k-n≦n+k (-n, k) LU x-y=-k-n (-k, n) 〔東京大〕 本冊 例題 89 x=y=n+k ( (n,-k) (k, − n) x+y+z≤n -x+y-z≤n x-y-z≦n -x-v+z≤n HINT z =kとおいてん のとりうる値の範囲を求 め, 平面 z =k上の格子 点の数をk, nで表し, 格子点の総数を求める。 ←空間を平面 z=kで切 口の図形を考え る。 から -n≤k≤n よって, 点 (x,y) の存在範囲は図から、4つの頂点が(-k, n). (-n, k),(k, -n (n-k) である長方形である。 この長方形にある格子点の個数を N とする。 直線y=x に平行で, 直線 x+y=n-k上の格子点を通る直線 ←直線y=xに平行で 上には (n-k+1) 個 また直線y=xに平行で,直線 x+y=n-k上の格子点を通らない直線上には (n-k) 個の格 子点があるから (n-k+1) 個の格子点を もつ直線は (n+k+1) 本, (n-k) 個の格子点をも つ直線は (n+k) 本ある。

回答募集中 回答数: 0
数学 高校生

点と点を結んでいる線はなんでしょうか? 書く必要がある線ですか?

素数平面 素数平面 in a=a+bi を座標平面上の点(α, b) で表したと この平面を複素数平面 または複素平面という。 複素数の実数倍 α=0 のとき 3点 0, α, β が一直線上にある 2 共役な複素数 1. 対称 3. 複素数の加法, 減法 点の平行移動や平行四辺形の頂点として表される。 ⇔ β=ka となる実数kがある 点α と実軸に関して対称な点は 点αと原点に関して対称な点は 点αと虚軸に関して対称な点は 2. 実数 純虚数 5.08 3. 和・差・積・商 a+β=a+B, ⇔a=d αが実数 αが純虚数 α = -α, a≠0 3 絶対値 複素数 α=a+bi に対して 1. 定義 |a|=|a+bil=√²+62 3. 2点α, β間の距離は α -α a a a-8=a-B₁ aß=aß. (2) - B |B-al -a 154 次の点を複素数平面上に記せ。 STEPA O a=a+bi A(a) a=-a+bi a 16 2.性質|a|=aa, |a|=|-2|=|a| 実物 a=a+bi ax ✓ 158 a=-a-bi-baa-bi ✓ 159 A(2-3i), B(−3+i), C(−2−2i), D(3), E(-4i) △*155 (1) α=a+2i, β=6-4i とする。 3 点 0, α, βが一直線上にあるとき, 実数 aの値を求めよ。 (2) α=3-2i,β=b+6i, y=5+ci とする。 4点 0, α, β,yが一直線上に あるとき, 実数 b,cの値を求めよ。 37 □ 156 α=3+i, β=2-2i であるとき、 次の複素数を表す点を図示せよ。 (1) α+β (2)α-β (3) 2a+β (4) α-2β (5) -2a+β * 157 次の複素数を表す点と実軸, 原点, 虚軸に関して対称な点の表す複素数をそ れぞれ求めよ。 *(1) 1+i (2) -3+4i (3) -√2-3i *(4) 4-√3i *16 16

回答募集中 回答数: 0