学年

教科

質問の種類

数学 高校生

この問題なんですがどうして n🟰1と2両方証明が必要なんですか?

504 重要 例題 60 n=k, k+1の仮定 解答 nは自然数とする。 2数x, yの和と積が整数ならば, x”+y” は整数であること を証明せよ。2月14 指針 自然数nの問題であるから,数学的帰納法で証明する。 +1 x+y+xy で表そうと考えると x*+1+y+1=(x*+y*)(x+y)-xy(x*~1+yk-1) よって、「x*+y^ は整数」に加え、「x-1+y^-1 は整数」という仮定も必要。 そこで,次の [1], [2] を示す数学的帰納法を利用する。 下の検討も参照。 [1] n=1, 2 のとき成り立つ。 初めに示すことが2つ必要。 [2] n=k, k+1のとき成り立つと仮定すると, n=k+2のときも成り立つ。 仮定にn=k, h+1などの場合がある CHART 数学的帰納法 [1] n=1のとき 出発点も それに応じてn=1,2を証明 x'+y'=x+y, 整数である。 n=2のとき x2+y2=(x+y)2-2xy で, 整数である。 1,2のときの証明 整数の和差・ [2] n=k, k+1のとき, x”+y” が整数である, すなわち, n=k, k+1の仮定 x+yx+y+1 はともに整数であると仮定する。 n=k+2のときを考えると x+2+3+2 = (x+1+y+1)(x+y)=xy(x+y) xC x+y, xy は整数であるから, 仮定により, x+2+yk+2 も整数である。 合 よって, n=k+2のときにもx"+y” は整数である。 [1], [2] から, すべての自然数nについて,x "+y” は整数で ある。 n=2のときの証。 整数の和差積は 注意 [2] の仮定でn=k-1, k とすると, k-1≧1の条件から≧2としなければならな 上の解答でn=k, k+1としたのは, それを避けるためである。 n=k, k+1のときを仮定する数学的帰納法 自然数nに関する命題P(n)について指針の [1] [2]が示されたとすると、

解決済み 回答数: 1
数学 高校生

多項式の加法についての質問です (2)の答え、5a^2+3ab+b^2と書かれていますが、bについて考えてるので、b^2+3ab+5a^2ではダメなんですか?

月 基本 例題 1 同類項の整理と次数・定数項 00000 次の多項式の同類項をまとめて整理せよ。また,(2),(3)の多項式において,[ ]. 内の文字に着目したとき,その次数と定数項をいえ。 (1)3x2+2x-6-4x2+3x+2 (2)_2a²-ab-b2+4ab+3a² +262 [b] (3)x3-2ax2y+4xy-3by+y2+2xy-2by+4a [xとy], [y] 同類項は,係数の和を計算して1つの項にまとめることができる。 例えば, (1) では 解答 p.12 基本事項 3,4 3x2-4x2=(3-4)x2=-x2 など。 また,(2),(3)において、[ ]内の文字に着目 したとき,着目した文字以外の文字は数と考 える。 例 4ab 係数 αに着目 4b.a 次 例えば, (3) xyに着目したら、残りのα, 6は数とみる。 αとに着目→4・ab ↑ 係数 2次 CHART 式の整理 同類項に着目して降べきの順に並べる (1) 3x2+2x-6-4x2+3x+2 =(3x²-4x2)+(2x+3x)+(-6+2) =-x+5x-4 (2) 2a2-ab-b2+4ab+3a2+262 =(2a2+3a²)+(-ab+4ab)+(-62+262) 同類項をまとめる。 同類項をまとめる。 =5d²+3ab+b2 次に, 6 に着目すると b2+3ab+5a2 62+6+▲ の形 次数2, 定数項 5a2 理。 6以外の文字は 考える。 (3)x-2ax2y+4xy-36y+y'+2xy-2by+4a =x-2ax2y+(4xy+2xy)+y2+(-3by-2by)+4a =x-2axy+6xy+y2-56y+4a 次に,xとに着目すると 次数 3, 定数項4a また, に着目すると y2+(-2ax2+6x-5b)y+x+4a 次数 2, 定数項 x+4a xとyについて 3 (項→2次の項→ の項→定数項の 理(降べきの順)。 <y2+y+▲の形 以外の文字は数 る。

解決済み 回答数: 1
数学 高校生

129の(2)の証明は、このような書き方でも大丈夫ですか?

るとき、 分線とう 基本120 補充 例題 129 三角形に関する等式の証明 X △ABCにおいて,次の等式が成り立つことを証明せよ。 ✓ asin AsinC+bsin BsinC=c(sin'A+sinB) ②a(bcos C-ccosB)=62-c2 CHART & SOLUTION 207 209 00000 p.194 基本事項 12 三角形の辺や角の等式 辺だけの関係に直す 等式の証明はか. 178 INFORMATION の1~3の方法がある。 (1) はるの方法, (2) は1の方 法で証明しよう。 a (1)正弦定理から導かれる sinA= 27 など(Rは外接円の半径)を,左辺と右辺それぞれ に代入する。 2R (2)余弦定理から導かれる cosC= a2+62-c2 2ab などを左辺に代入する。 解答 DS (1)△ABC の外接円の半径をRとすると,正弦定理により asin AsinC+bsin BsinC =a- ac 2R 2R +6. b 2R 2R C Ca2+62) 4R2 a c(a²+b²) c (sin²A + sin²B) = c{(2)² + ( 20 ) } = c(a²- =cl(2)+(2)-(+6) 2R したがって, 与えられた等式は成り立つ。 4R2 別解 △ABCの外接円の半径をR とすると, 正弦定理により a=2RsinA, 6=2RsinB, c=2RsinC よって (左辺) =2Rsin AsinC+2Rsin' Bsin C =2R sin C(sin²A + sin²B) =c(sin'A+sinB) = (右辺) したがって, 与えられた等式は成り立つ。 4章 14 辺だけの関係に直す。 sinA= a 2R' b sin B= 正弦定理と余弦定理 2R' sinC= を代入。 2R inf. 別解では,角だけの 関係に直してうまくいった が 数学Ⅰの範囲では,a, b, c を sinAなどの角だ けの関係に直しても、その 後の変形の知識が不十分で うまくいかないことがある。 そのため、辺だけの関係に もち込む方がスムーズであ ることが多い。 cos C= a²+b²-c² 2ab (2) 余弦定理により a (bcos C-ccosB) = abcosC-accos B a²+b²-c² c²+a²-b² =ab₁ ac 2ab 2ca = (a²+b²-c²)-(c²+a²-b²) = b² — c² 2 代入。 したがって, 与えられた等式は成り立つ。 cos B= c²+a²-b² を 2ca

解決済み 回答数: 1
数学 高校生

写真の解説の部分を見ていただきたいのですが、どうして下に凸や上に凸のグラフだとわかるのですか。また、なぜ通る点がわかるのか教えてほしいです。解説の言っていることが全体的に分からなくて、、

基本 例題 90 2次不等式の解から係数決定 00000 (1) xについての2次不等式x2+ax+b20 の解が xs-1, 3≦x となる ように, 定数a, bの値を定めよ。 (2)xについての2次不等式 ax²-2x+b>0の解が2<x< 1 となるよ うに、定数α, bの値を定めよ。 CHART & SOLUTION 2次不等式の解から係数決定 2次関数のグラフから読み取る => 答 y=x+ax+b のグラフが xs-1, 3≦xのときだけx軸を含む上側にある。 下に凸の放物線で2点 (1,030) を通る。 y=ax²-2x+b のグラフが-2<x<1のときだけ軸の上側にある。 上に凸の放物線で2点 (2,0), (10) を通る。 (1)条件から, 2次関数 y=x2+ax+b のグラフは,x-1,3≦x のときだ けx軸を含む上側にある。 すなわち、下に凸の放物線で2点 (1,030) を通るから 1-a+b=0, 9+3a+b=0 これを解いて なんで α=-2,b=-3 わかった (2)条件から, 2次関数y=ax²-2x+b のグラフは,-2<x<1のときだけx 軸の上側にある。 すなわち, 上に凸の放物線で2点 2010 を通るから a<0 0=4a+4+b 0=α-2+b ① ① ② を解いて a=-2, b=4 3 基本 87 (1)x13xを 解とする2次不等式の1つ は (x+1)(x-3) 20 左辺を展開して x²-2x-3≧0 の係数は1であるから、 x2+ax+b≧0の係数と比 較して α=-2,b=-3 inf 2つの2次不等式 ax2+bx+c<0 と a'x²+b'x+c<0 の解が 等しいからといって,直ち に a=α', b=b',c=c とするのは誤りである。 + 1 対応する3つの係数のうち、 少なくとも1つが等しいと きに限って、残りの係数は 等しいといえる。 例えば, c=c' であるならば、 |a=a', b=b' といえる。 151 3歳 11 2次不等式 これは α <0 を満たす。 PRACTICE 90® xについての2次不等式 ax²+9x+2b>0 の解が4<x<5 となるように, 定数a, bの値を定めよ。 36m>4

解決済み 回答数: 1