学年

教科

質問の種類

数学 高校生

和の法則と積の法則がイマイチ良く分からないので教えて下さいお願いします

各場合を く数えるのに便利であ 2和の法則 2つの事柄AとBは同時には起こらないとする。 Aの起こり方がα通りあり、 こり方が通りあれば, AまたはBの起こる場合は,a+b通りある 3.積の法則 ・BのB 事柄Aの起こり方がα通りあり、そのどの場合に対しても事柄Bの起こり方が6通り あれば,Aが起こり, そしてBが起こる場合は, a×b通りある。 3つ以上の事柄についても,同じように成り立つ。 A 問題 5個の数字1, 1, 1,2,3の中から, 3個の数字を使ってできる3桁の整数 をすべて書き出せ。 p.18 *26 ☑ 27 大中小3個のさいころを投げるとき, 次の場合は何通りあるか。 p.19 例3 28 * (1) 目の和が8になる場合 (2)目の積が10 になる場合 (3)目の大きさが,大中小の順に小さくなる場合 1個のさいころを2回投げるとき,目の和が次のようになる場合は何通りあ るか。 ●教p.21 例4 16 または 9 *(2)3の倍数 29 *30 バス停 A からバス停 Bへ行くのに, 4種類のバス路線がある。AからBま で行って帰ってくるのに,次の各場合。 往復に利用する路線の選び方は何通 りあるか。 (1)往復で同じ路線を利用してよい。 (2) 往復で同じ路線は利用しない。 ◆教p.22 例5 次の式を展開したとき, 項は何個できるか。 p. 22 月 (1) (a+b+c+d)(x+y (a+b+c)(p+g)(x+y+z) *32

未解決 回答数: 1
数学 高校生

(2)なんでそうなるのかわかりません。説明して頂きたいです🙇🏻‍♀️

328 第9早 練習問題 3 (1)675の正の約数の個数とその総和をそれぞれ求めよ. (2)756n が平方数(ある整数の2乗で表される数)となる最小の自然数n を求めよ. 精講(1)は素因数分解を活用しましょう.素因数分解をするときは2,3, 5,7,…と小さい素数から順に割り切れる素数を探していくのが基 本です.3の倍数の判定条件が 「各桁の数の和が3の倍数」 であることを押さ えておくと便利です. (2)において,ある数が平方数になるということは,その数が全く同じ2つの数 に分割できるということです.そのためには, 「すべての異なる素因数を偶数 個ずつ持つこと」 が条件になります. 解答 (1) 675を素因数分解すると 675=3x52 3675 3)225 第2の倍数ではない 6+7+5=18 より3の倍数 2+2+5=9 より3の倍数 3 を何個取り出すかが 3) 75 7+5=12 より3の倍数 0~3個の4通り 5) 25 5の倍数 5 を何個取り出すかが 5. 0~2個の3通り ( 小さい素数から ココが素数になれ 順に調べる ばおしまい なので、約数の個数は 4×3=12個 その総和は 」と「大 (1+3+32+3)(1+5+52)=40×31=1240 (2)756を素因数分解すると 756×7 756n を平方数にするためには,すべての素因数が 2)756 2の倍数 偶数個になるようにすればよい. 2)378- -2の倍数 よって、かけるべき最小の自然数nは 3)189 -3の倍数 3) 63 -3の倍数 である. n=3×7=21 このとき 756×21=22×34×720 3) 21 -3の倍数 偶数 7 素数 女子() =(2×32×7)=1262 /

未解決 回答数: 1