学年

教科

質問の種類

数学 高校生

解説のO1O2=5+3=8という部分がなぜそのような指揮が出てこの計算に至るのかわかりません。教えていただきたいです。

実戦問題 130 点Zを端点とする半直線 ZX と 半直線ZY があり, 0° < ∠XZY <90° とす る。また,0°<ZSZX<<XZY かつ STYXTY を満たす点Sをとる。 点S を通り,半直線 ZX と半直線 ZY の両方に接する円を作図したい。 円Oを,次の (Step 1)~ (Step 5) の手順で作図する。 手順 (Step 1 ) XZY の二等分線ℓ上に点Cをとり, 右 の図のように半直線 ZX と半直線 ZY の両 方に接する円Cを作図する。 また,円Cと 半直線 ZX との接点を D, 半直線ZY との 接点をEとする。 (Step 2 ) (Step 3) との交点の1つをGとする。 円Cと直線ZS (Step 5 ) 点Oを中心とする半径 OH の円Oをかく。 Z E D 参考図 半直線ZX上に点Hを DG // HS を満たす ようにとる。 (Step 4) 点Hを通り, 半直線 ZX に垂直な直線を引き, lとの交点をOとす る。 : I •S I Y X (1)(Step 1)~(Step 5)の手順で作図した円Oが求める円であることは,次の構 想に基づいて下のように説明できる。 構想 円Oが点Sを通り, 半直線 ZX と半直線ZY の両方に接する円であることを示 すには, OH=ア が成り立つことを示せばよい。 ZDG と ZHS との関係, および AZDC と ZHO と 作図の手順により, の関係に着目すると DG: イ DC: オ ウ であるから, DG:イ =DC : オ となる。 ここで, 3点S, 0, Hが 一直線上にない場合は, <CDG=∠カ であるので, CDG と △ カ との関係に着目すると, CD = CG より, OH = ア であることがわかる。 なお,3点S, 0, Hが一直線上にある場合は, DG = キ DC となり, DG: イ=DC: オ より OH=|| ア であることがわかる。

解決済み 回答数: 1
数学 高校生

⑵ですが、僕の解き方ではダメですかね ベクトルです。解説お願いします

例題 352 交点の位置ベクトル(3) △ABCにおいて, BC=5, CA=6,AB=7 とする. この三角形の内接 円と辺BC, CA, AB の接点をそれぞれ D, E, F とする. また, 線分BE と線分 AD の交点をGとする. AB=p, AC=gとして、 (1) 線分BD の長さを求め, ADを,g を用いて表せ. (2) AGをgを用いて表せ. (3) 3点C,G, F は一直線上にあることを示せ . 考え方 (3) CG CF をb,g を用いて表す。 解答 (1) BD=BF=x, CD = CE=y, AE = AF = z とおくと, C, G,F が一直線上にあるということは, CG = kCF となる実数んが存在すると いうことである. x+y=5 TOATCHIGAN y+z=6より、x=3, y=2, z=4 |z+x=7 よって, Focus AD 2514 5 5 (2) 点Gは線分 AD上にあるので, AG=kAD (kは実数) と表されるから, AG=12/3+1/23kg AĞ= ka BD = 3, BD:DC =32 なので, 2AB+3AC_2D+3g = また, 点Gは線分BE 上にあるので, BG: GE=t:(1-t) とおくと, AG=(1-t)AB+tAE = (1-t)p+ta ....2 = 0, 0, I g は平行ではないから, ①,②より, B k=1-12/23k=212/31 つまり,k=10, t=0 -t 13 13 2012/3=1-1.12/31k = 2/3/31 つまり、 6 AG=1/3+139 よって, AG= (3) CF=AF-AC-476-à 4→ CG-AG-AC (13 P 503010 したがって CG=13CF よって, 3点C, G, F は一直線上にある. ( 広島市立大 ) →> x B 50²-8* 3 C-(137+139)-9=136-139=13 (4-9) 7 FL 3点A,B,Cが一直線上 ⇔AC=kAB (kは実数) F *** -3 A Z Dyc 1G /E EV2/C D 2 C

解決済み 回答数: 1