学年

教科

質問の種類

数学 高校生

下線部のところなんでですか?🙇‍♂️

370 基本 例題 13 複利計算と等比数列 毎年度初めにα円ずつ積み立てると, n 年度末には元利合計はいくらになる か。 年利率を、1年ごとの複利で計算せよ。 CHART & THINKING nの問題 n=1,2,3, ・・・で調べてn化 (一般化) 中央大 p.365 基本事項3基本11 「1年ごとの複利で計算」とは、1年ごとに利息を元金に繰り入れて利息を計算することを いいこの計算方法を複利計算という。 なお,1年度末の元利合計は、次のように計算される。 (元利合計)=(元金)+(元金)×(年利率)=(元金)×(1+年利率) この例題をn=3として考えてみると,各年度初めに積み立てるα円について,それぞれ 別々に元利合計を計算し、 最後に総計を求めることになる。 a 積み立て ← 1年度末 a(1+r) a 積み立て ← 2年度末 3年度末 a(1+r)² a(1+r)³ a(1+r) a(1+r)² a 積み立て a(1+r) 上の図から、3年度末には α(1+r)+α(1+r)2+α(1+r) 円になる。 これをもとに, n 年度末の元利合計を和の形で表そう。 解答 各年度初めの元金は,1年ごとに利息がついて(1+r)倍と ← α円は なる。 D にα ( 1 + r) 円, よって,第1年度初めのα円は第n 年度末には α(1+r)"円, 第2年度初めのα円は第n年度末にはα(1+r)1円 2年後にα(1+r)2円, となる。ゆえに、求める元利合計Sは,これらすべての和で S=a(1+r)"+a(1+r)"-1++a(1+r) (F) これは, 初項 α(1+r), 公比 1+r, 項数nの等比数列の和で あるから, 求める元利合計は (1+r)-1 S= a(1+r){(1+r)"-1}__a(1+r){(1+r)"−1} (円) r PRACTICE 128 ......n …… 年後にα(1+r)" 円になる。 α(1+r) を初項, α(1+r)" を末項とする。 Jei

未解決 回答数: 1
数学 高校生

青い下線部の座標はどうしてこのようになるのでしょうか?? 座標の表し方とその後の照明の運び方がわかりません。 どなたか分かる方教えてください!!‍🙇‍♀️

116 基本 例題 67 座標を利用した証明 (1) 00 △ABCの重心をGとするとき, AB' + BC2+CA²=3(GA2+GB2+GC) 成り立つことを証明せよ。 CHART & THINKING 座標を利用した証明 座標を利用すると、図形の性質が簡単に証明できる 場合がある。 そのとき, 座標軸をどこにとるか, 与 えられた図形を座標を用いてどう表すかがポイン トとなる。 そこで、あとの計算がスムーズになるよ うに, 座標軸を定める 10 を多く ② 変数を少なく 1 問題に出てくる点がなるべく多く座標軸上に くるように— 0 が多くなるようにとる。 y p.112 基本事項 3. A(x1, y₁) (x + x + x + C(x3, 93) 3 B(x2,y2) COSTA x O 辺BCをx軸上に y A(x1, y₁) A x 3 OB(x2,0) C(x3,0)HA 日 もっとよい方法は? 2 2つの頂点を原点に関して対称にとる 変数の文字を少なくする。 これらをもとに,点 A, B, C の座標を文字でどう表すかを考えよう。 解答 直線BC をx軸に,辺BCの垂直 BC-(-1-4)+(S-1)=Se (8-1)+((-)-1)-2 二等分線をy軸にとると、線分A(a,b) BCの中点は原点0になる。 10を多 ② 変数を少なく A (a,b) とすると、 a b c(1.12/3)となり 33 A(3a, 36), B(-c, 0), C(c, 0) とすると, Gは重心であるから,(0 G(a, b) と表すことができる。 2 (G(a,b) -0) B # (-c, 0) (c,0) x 少し煩雑 このとき +1)(8-6)+ a AB2+BC2+ CA2 1-88-D ={(-c-3a)+(-3b)2}+{c-(-c)}+{(3a-c)2+(36)2} ==3(6α²+662+2c2 ...... ① GA2+GB2+GC2 ={(3a-a)2+(36-b)2}+{(-c-a)+(-6)2} =6a2+662+2c2 ****** ② ②から +{(c-a)+(-6)2} AB2+BC2+CA2=3(GA2+GB2+GC?) 両辺を別々に計算 比較する。 注意 更に都合がよ ようにと, A(0,36 とおいてはいけない。 場合,Aはy軸 (辺 垂直二等分線) 上の 定されてしまう。

解決済み 回答数: 1
数学 高校生

1枚目の問題、最後青マーカー引いたところに、「Xの値には言及してないので」a=4はまとめて含んであると書いてあるんですが、 他の問題を見てみると例えば2枚目の(2)のようにXの値は問題で言及されてないと思うんですが、a=3は場合[1]にまとめずに書いてるんですがそこはなぜで... 続きを読む

例話 192 最大 最小 0000 (f(x)=x-10x2+17x+44 とする。 区間 a≦x≦a+3 における f(x) の 最大値を表す関数g(α)を, αの値の範囲によって求めよ。 © CHART & THINKING 最大 最小 グラフ利用 極値と端の値に注目 』の値が変わると 区間 a≦x≦α+3 が動くから, αの値によって場合分けする。 場合分けの境目はどこになるだろうか? 基本 190 y=f(x)のグラフをかき, 幅3の区間 a≦x≦a+3 を左側から移動させながら考えよう。 大値をとるxの値が区間内にあるか、区間の両端の値f(α) f(a+3) のどちらが大 いかに着目すればよい。 f(a)=f(a+3) となるαの値も境目となることに注意。 f(x)=3x²-2x+17=(x-1)(3x-17) f(x) = 0 とすると 17 x=1, 3 増減表から,y=f(x) のグラフは右下のようになる。 [1] a+3 <1 すなわち α < 2 のとき g(a)=f(a+3)=(a+3)3-10(a+3)2+17(a+3)+44 =a3-a²-16a+32 [2] α+31 かつ α <1 すなわち -2≦α <1 のとき (a)=f(1)=52 a1 のとき,f(a)=f(a+3) とすると a3-10a2+17a+44-a3-a²-16a+32 整理すると 9α2-33a-12=0 よって (3a+1)(a-4)=0 17 x 1 3 f'(x) + 0 - 0 + f(x) 極大 52 44 極小 y=f(x)| N 73 17 a≧1 から a=4 [3] 1≦a<4 のとき ( g(a)=f(a)=a-10a2+17a+44 [4] 4≦a のとき g(a)=f(a+3)=a-a²-16a+32 [1] y y=f(x); [2]yy=f(x): [3] y=f(x); [4] ya y=f(x)¦ 52 x 6章 21 関数の値の変化 AR 0. a x a 1a+3×17 x 11 4 7 x a+3 小泉 a a+3 0 a 1 4 a+3 x 7 In a=4 のとき,最大値を異なるxの値でとるが,xの値には言及していないので, 4≦a として [4]に含めた。 RACTICE 1926 と _f(x)=2x3-9x2+12x-2 とする。 区間 a≦x≦a+1 における f(x) の最大値を表 て求めよ。 a (a) て の 90

解決済み 回答数: 1
数学 高校生

(1)、右辺の絶対値の形と左辺の絶対値の形で二乗の仕方が変わるのはなんでですか?なぜ左辺は絶対値外して二乗して良いんですか?🙇‍♂️

基本 例題 29 不等式の証明 (絶対値と不等式) 0000 次の不等式を証明せよ。 (1)|a+6|≦|a|+|6| (2)|a|-|6|≦|a-bl p.42 基本事項 4 基本28 1章 CHART & THINKING 似た問題 1 結果を使う ② 方法をまねる (1) 絶対値を含むので,このままでは差をとって考えにくい。 |A=A' を利用すると, 絶 対値の処理が容易になる。 よって、 平方の差を作ればよい。 (2)証明したい不等式の左辺は負の場合もあるから, 平方の差を作る方針は手間がかかり そうである(別解 参照)。 そこで, 不等式を変形すると |al≦la-61+16 ← (1) と似た形になることに着目。 ①の方針で考えられそうだが,どのように文字をおき換えると (1) を利用できるだろうか? (1) (|a|+|6|2-la+b= (la2+2|a||61+16)-(a+b)2 =a²+2|ab|+b²−(a²+2ab+b²) =2(labl-ab)≥0 ..(*) ...... よって la+b(a+b)² |a+6|≧0,|a|+|6|≧0 であるから 別解 la+6|≦|a|+|6| lalalal -1666 であるから 辺々を加えて -(\al+16)≦a+b≦|a|+|6| la+6|≦|a|+|6| |a|+|6|≧0 であるから in A≧0 のとき |-|A|≦A=|A| AK0 のとき -|A|=A<|A| であるから,一般に -ASASA 更に、これから Al-A≥0, |A|+A≥0 c≧0 のとき -c≤x≤cx≤c 4

解決済み 回答数: 1
数学 高校生

私が解いているのはpracticeなのですが、 基本例題で用いた方法は利用できなくて、、、 どのように答えを求めたら良いですか?? 分かる方教えてください!🙇‍♀️

基 例題 55 高次式の値(割り算を利用して次数を下げる) P(x)=x+3x2+x+2について,次の問いに答えよ。 (1) x=-1+i のとき, x2+2x+2=0 であることを証明せよ。 2 P(x) を x2+2x+2で割った商と余りを求めよ。 5. (3) P(-1+i) の値を求めよ。 ③ 基本 10 基本 60 CHART & THINKING (1)(2)(3)のヒント (3)でP(-1+i) の値を求めるのに, x= -1 + i を直接代入すると計算が煩雑。 そこで,(1),(2) をヒントとして利用しよう。 (2)で求めた商Q(x) と余り ax +6 を用いると, 割り算の基本公式から P(x)=(x2+2x+2)Q(x)+ax+b となる。ここで, (1) の結果をどのように利用すればよいだろうか? りをそれ りを考え 割った余 の多項 る。 R を代 解答 うしの (1) x=-1+i から x+1=i 両辺を2乗して これを整理して (x+1)=-1 x2+2x+2=0 2章 8 剰余の定理と因数 x +1 x2+2x+2)x+3x2+ x +2 ◆iを消去。 (3) P(x)の次数を順次下 げていく方法もある。 x2+2x+2=0 から x2=-2x-2 よって P(x)=x.x2+3x²+x+2 =x(-2x-2) +3(-2x-2)+x+2 =-2x2-7x4 別解 x=-1+iのとき x2+2x+2=(-1+i)+2(-1+i)+2 =1-2i+i-2+2i+2 =1-1=0 (2)右の計算から 商 x+1 x+2x2+2x 余り 3x x2-x+2 (3)(2)から x2+2x+2 P(x)=(x2+2x+2)(x+1)-3x 0=-3x これに x=-1+i を代入すると, (1) の結果から P(-1+i)=0-3(-1+i) =3-3i =-2(-2x-2)-7x-4 =-3x ← (1) から x=1+iのと きx2+2x+2=0 INFORMATION 虚数単位を消去するための工夫 入試などでは, (3) だけが単独で出題されることも多い。 そういう場合も遠回りに感じ るかもしれないが, x+1=iと変形して両辺を2乗すると, (1) の形のように虚数単位 がなくなり実数係数の2次方程式となるので,計算がスムーズになる。 RACTICE 55 P(x)=3x3-8x²+x+7 のとき,P(1-√2i) の値を求めよ。

解決済み 回答数: 1
数学 高校生

赤線引いたところの3C2ってなんですか?🙇‍♂️

mx35 重要 例題 50 平面上の点の移 右の図のように, 東西に4本, 南北に4本の道路が ある。 地点Aから出発した人が最短の道順を通って 地点Bへ向かう。 このとき,途中で地点Pを通る確 率を求めよ。 ただし, 各交差点で, 東に行くか、北 に行くかは等確率とし,一方しか行けないときは確 率1でその方向に行くものとする。 CHART & THINKING 求める確率を A→P→Bの経路の総数 A→Bの経路の総数 から、 4C3X1 6C3 とするのは誤り! この理由を考えてみよう。 4 基本 48 G n 返 (1) は、どの最短の道順も同様に確からしい場合の確率で,本問 は道順によって確率が異なるから, A→Bの経路は同様に 確からしくない。 例えば, A1 P11Bの確率は 1/2×12×12×1/2×1×1=16 A1P11Bの確率は 1/2×12×1/2×11×1=1/3 A B よって,Pを通る道順を, 通る点で分けたらよいことがわかるが,どの点をとればよいだろ うか? 解答 右の図のように, 地点 C, C′', P' をとる。 A-A Pを通る道順には次の2つの場合があり,これらは互いに 排反である。 [1] 道順 AC′ →C→P→B この確率は 1/x1x1/2 2X1X [2] 道順 AP'→P→B B P' P A CC この確率は1/2)(1/2)x1/12×1×1=216 1 3 よって、求める確率は 8 16 5 16 × |C→Pは1通りの道順であ 注意 [1] →→→↑↑↑と進む。 [2] ○○○ ↑↑と進む ○には2個と↑1個

解決済み 回答数: 1
数学 高校生

黄チャートの数Aの例題33(3)なんですけど、なぜ左右対称になるものをもとめる必要があるのですか?

重要 例題 33 同じものを含む円順列・じゅず順列 00000 ガラスでできた玉で, 赤色のものが6個, 黒色のものが2個,透明なものが1 個ある。玉には,中心を通って穴が開いているとする。 (1) これらを1列に並べる方法は何通りあるか。 (2)これらを円形に並べる方法は何通りあるか。 (3)これらの玉に糸を通して首輪を作る方法は何通りあるか。 CHART & THINKING 基本18 重要 22 (2)円形に並べるときは,1つのものを固定の考え方が有効。 固定した玉以外の並び方を 考えるとき,どの玉を固定するのがよいだろうか? (3) 「首輪を作る」 とあるから,直ちに じゅず順列=円順列÷2 でよいだろうか? すべて異なるもの なら, じゅず順列で解決するが,ここで は、 同じものを含むからうまくいかない。 その理由を右の図をもとに考えてみよう。 000 左右対称 裏返すと同じ人 01 解答 (1) 1列に並べる方法は 9! 6!2! 9・8・7 2.1 =252 (通り) 同じものを含む順列。 (2) 透明な玉1個を固定して, 残り8個を並べると考えて 8! 8.7 -=28(通り) 6!2! 2.1 (3)(2) 28通りのうち, 図 [1] のように 左右対称になるものは 4通り よって、 図 [2] のように左右対称でない [1] 円順列は 28-424 (通り) [2] この24通りの1つ1つに対して, 裏 返すと一致するものが他に必ず1つ ずつあるから,首輪の作り方は 24 2 4+- =16(通り) PRACTICE 33° AL 307 1章 ◆赤玉6個、黒玉2個を1 列に並べる場合の数。 inf (2) について 解答編 p.213 にすべてのパターン の図を掲載した。 左右対称 でないものは、裏返すと一 致するものがペアで現れる ことを確認できるので参照 してほしい。 BACURE 13A8 A8 3 組合せ 7 通り,円形に並べる方法は 輪を作る方法はウ通りある。 白玉が4個、黒玉が3個, 赤玉が1個あるとする。 これらを1列に並べる方法は 通りある。更 更に,これらの玉にひもを通し, [近畿大]

解決済み 回答数: 1
数学 高校生

この正四面体で、B,E,Dが一直線上にあるってどういう事なんですか?見る角度によってEの位置変わらないんですか?🙇‍♂️

224 重要 例題 141 四面体上の折れ線の 四面体 ABCD があり, AB=BC=CA=8, AD=7 である。 COS ∠CAD= 11 1/4 のとき,次のものを求めよ。 (2) ∠ACD の大きさ (1) 辺 CD の長さ 基 (3) AC上の点Eに対して, BE+ED の最小値 CHART & THINKING 空間の問題 平面図形 (三角形)を取り出す (1), (2) 求めるものを含む三角形はどれかを 見極めよう。 (1) (2) 辺 CD, ∠ACD を含むのはACD (3)空間のままでは考えにくい。 △ABCと △ACDを1つの平面上に広げ, 平面図形と して考えよう。 解答 (1) ACD において, 余弦定理により CD2=72+82-2・7・8cos∠CAD=25 CD> 0 であるから CD=5 (2) ACD に余弦定理を適用して B 82+52-72_1 COS∠ACD= 2.8.5 2 よって ∠ACD=60° B D B (3) 辺ACの C まわりに広げる A 7 8 8 D C COS ∠CAD (3) 右の図のように、平面上の四角 形ABCD について考える。 3点B, E, D が1つの直線上に B 8 7 81. ← 四面体 AB △ABC, 4 上に広げる E あるとき BE+ED は最小になる。 よって, BCD において,余弦 定理により 8 60°60° D ◆最短経路 5 120°- BD'=82+52-2・8・5cos <BCD=129 BD> 0 であるから BD=√129 点を結ぶ <-2BCD = ∠ACB+ したがって,求める最小値は 129

解決済み 回答数: 1