学年

教科

質問の種類

数学 高校生

(2)数学的帰納法を使うとどういう回答になりますか?

基礎問 45 はさみうちの原理(Ⅱ) 数列{an} は 0<a1 <3, an+1=1+√1+an (n=1, 2, 3, ... をみたす ものとする。このとき,次の(1),(2),(3)を示せ. (1) n=1,2,3, ・・・ に対して, 0<an<3 よって, n≧2 のとき, 3-a.<(3-an-)<()(-a)<<()(3-a) 78 79 \nl (2) n=1,2,3, に対して, 3-an≦ (3) liman=3 精講 11-0 (1) 漸化式から一般項を求めないで数列の性質を知りたいときま ず数学的帰納法と考えて間違いありません。 (B (2)これも (1) と同様に帰納法で示すこともできますが、 「台」を 「=」としてみると,等比数列の一般項の公式の形になっています。 (3)44 のポイントの形になっています。ニオイプンプンというところでしょう。 解答 (1)0<a<3………①を数学的帰納法で示す. mir (i) n=1 のとき, 条件より 0<a< 3 だから, ① は成りたつ. (ii)n=k(k≧1) のとき, 0<ak <3 と仮定すると, 1 <ak+1<4 .. 1<√1+ak<2 n=1のときも考えて, 3-ans \n-1 (3-a) (3)(1),(2)より 0<3-ans()(3-as) 前に不等式証明 あるので匂いプンプン 11-00 ここで, lim はさみうちの原理より (3- = 0 だから, 42 lim (3-am)=0 liman=3 参 考 43 でグラフを利用して数列の極限 を考えました.今回は, 38の復習も 兼ねて, グラフで考えてみます。 (a) y=x as aa y=f(x) y=f(x)=1+√1+x と y=xのグラフを かき, α1 を 0<x<3 をみたすようにとれば, a2, a, ・・・と, どんどん3に近づいていく様 子が読み取れるはずです . (an) d a 3 10 I ポイント 一般項が求まらない数列{an} に対しても lima は, 次の手順で求めることができる ① anのとりうる値の範囲をおさえる 第4章 両辺に1を加えて 2<1+1+ <3 .. 2<ak+1 <3 よって, 0<ak+1 <3 が成りたつ. (i), (ii)より, すべての自然数nについて ① は成りたつ. (2) an+1=1+√1+an3-an+1=2√1+αn まず,左辺に3+1 (右辺)= (2-√1+am)(2+√1+αn) 2+√1+an をつくると (1)より,1<√1+am<2の両辺に2を加えて3<2+√1+an <4 両辺の逆数をとって1/1 3-4 >0 だから, 2+√1+an 3 3-a (3-an) 2+√1+an3 ∴.3-an+1 < ÷(3- ② liman(=α) を予想する →80 ③ |an+1-α|≦klan-α (0<k<1) の形に変形し て, はさみうち 3-an 2+√1+an <右辺にも3-αがでて くる 演習問題 45 xn²+2 √2+1= 1, 2, ...) で表される数列{rn} に 2.xn ついて 次の(1),(2),(3)を示せ. (1) √2+1<In (2) n+1-v (2) (3)lim=√2 8012

回答募集中 回答数: 0
数学 高校生

微分についての質問です。一枚目の写真で青マーカーを引いたところには、「三次不等式はグラフを利用して求める。極値を求める必要はない。」とありますが、例題212.213では極値を出して解いている気がします。 ・なぜ例題212.213では極値を出して、例題216では極値を出して... 続きを読む

2 406 第6章 微分法改 練習 [216] **** 7956 く 50 785 2210 196 例題 216 三角不等式 **** cos 30 + cos 20+ cos >0 を満たす0の値の範囲を求めよ.ただし, 0≦02 考え方 解答 とする. 例題 212(p.402) と同様にして3次関数のグラフとx軸の位置関係を考える. まず cosa=t とおき,tの3次不等式を作る cost とおくと,002πより、 また, cos30=4cos0-3cos0=4t-3t cos 20=2 cos 0-1=2t2-1 4t3+2t-2t-1>0 したがって, 与式は, (4t-3t) + (2-1) +t>0 2t2(2t+1)-(2t+1)>0 (2t+1)(2-1)>0 ...... ② (2t+1)(2-1)= 0 とすると, tの値の範囲に注意 与式の左辺を cosで 統一する。そのとき 倍角,2倍角の公式を 利用する. ((p.269 参照) 組み合わせを考えて, 因数分解する。 [解] Commen ここ こで, 2 線が一致 200 とし, 線をも この √2 1 1 t=- 0 2' √2 2 y=4t+2t-2t-1 のグラフは, 右の図のようになる. したがって、②の解は、 ①より RD 3次不等式はグラフを 利用して考える. 極値 を求める必要はない。 30 1 <t≦1 √2 2√2 よって,t=cos 0,0≦02 より 0≤0< 単位円を利用して8の 範囲を求める. て π 第3,4象限の解と第2, 2 3 147 4 1 √2- 1象限の解は,それぞ 例 0 5 << 27 << れx軸に関して対称 10 1 x 43 7 3π 1 4π 注〉和積の公式を用いて次のように解くこともできる. (p.274 参照) ( cos30 + cos 0) + cos20>0 2 cos 20 cos 0+ cos 20>0 cos 20 (2 cos 0+1)>0 (2cos'0-1)(2cos0+1)>0 ここで, cosa=t とおくと, cosA+ cosB=2cos- A+B A-B COS 2 2 (2t2-1)(2t+1)>0 あとは、例題216と同様にして解けばよい. tan 20 + tan00 を満たす 0 の値の範囲を求めよ。ただし,0≦02 とする. 次

回答募集中 回答数: 0
数学 高校生

(2)(イ)の考え方が分かりません

基礎問 精講 今目で 135 場合の数と漸化式 (1)5段の階段があり、1回に1段または2段 登るとする。このとき,登り方は何通りある か。ただし、スタート地点は0段目とよぶこ とにする. (右図参照) (2)(1)と同じようにn段の階段を登る方法が の画 an通りあるとする.このとき (ア) α1, a2 を求めよ. n≧1 のとき, an+2 を an+1, an で表せ (ウ) αg を求めよ。 211 (イ) 1回の登り方に着目して(n+2) 段の階段を登る方法を考えると次 の2つの場合がある。 ① 最初に1段登って, 残り (n+1) 段登る ② 最初に2段登って、残り段登る ①,②は排反で, (n+1) 段登る方法, n段登る方法はそれぞれ an+1 通り, an通りあるので, an+2=an+1+an an+2=an+1+an (ウ)(イ)より, い as=a+α6=(a6+αs)+α6 =2a+αs=2(as+α)+as =3a5+2a=3(a+α3)+2as =5a+3a3=5(as+az)+3as =8a3+5a2=8(az+ai)+5az (1) まず, 1段, 2段, 2段と登る方法と2段, 1段, 2段と登る 方法は、異なる登り方であることをわかることが基本です。次に, ると=1段を使う方法は5が奇数であることから1回,3回, 5回のどれかです. わらないかんそこで, 1と2をいくつか使って,和が5になる組合せを考えて,そのあと 入れかえを考えればよいことになります。 (2)(イ)これがこの135 のメインテーマで, 漸化式の有効な利用例です。考え 方は、ポイントに書いてあるどちらかになります. この問題では,どちらで も漸化式が作れます。 (ウ)漸化式が与えられたとき, 一般項を求められることは大切ですが、漸化 式の使い方の基本は番号を下げることです。 解答 (1)5段の階段を登るとき, 1段登ることは奇数回必要だから, 1段を1回使う組合せは, 1段, 2段2段 参考 =13a2+8a=13×2+8×1=34 (通り) IA 91 ポイント I. (ウ)の要領でas を求めると, α5=3a2+2a=3×2+2=8 (通り)となり, 1) の答と一致します。 Ⅱ. 最後の手段に着目するときは,次の2つの場合となります。 ① まず(n + 1) 段登って, 最後に1段登る ②まず段登って、 最後に2段登る ポイント 場合の数の問題で漸化式を作るとき、次のどちらか ① 最初の手段で場合分け ② 最後の手段で場合分け 3回使う組合せは,1段, 1段, 1段, 2段 演習問題 135 3+4+1=8 (通り) (2)1段登る方法は1つしかないので, a=1 5回使う組合せは,1段, 1段, 1段, 1段,1段で それぞれ,入れかえが3通り,4通り、1通りあるので 横1列に並べられたn枚のカードに赤か青か黄のどれか1つの 色をぬる. 赤が連続してはいけないという条件の下で、ぬり方が an通りあるとする. (1) a1, a2 を求めよ. 2段登る方法は,1段,1段と2段の2通りあるので,a=2 (2) an+2 を an+1, an で表せ . n≧1のとき, (3) α8 を求めよ.

回答募集中 回答数: 0