学年

教科

質問の種類

数学 高校生

これの答えを教えてください! 解答がなくて答え合わせができず、困ってます😭

196-197 ません) らない) つくるこ をすべき とつくる 続けら -199 だ) た) ―には の意 Knot 0 B30 XOT XEXERCISES ES 不定詞① (名詞用法) ⑤ [ ]内の意味に合うように、不定詞を使って英文を完成させなさい。 (1) Ann wants to know a teacher. [教師になる方法] (2) I know (3) Sam didn't know (4) I haven't decided that book. [どこで買えばいいか] [何を言えばいいのか lood to of DoverIO for Canada yet. [いつ出発すべきか] HOUSTI RISTONSSON 0 ⑥6 日本語に合うように( (1) 大切なのは、だれにもうそをつかないことだ。 The important thing (to /is/lie / not) to anyone. )内の語句を並べかえ, 全文を書きなさい。 16 SORTIR D aslood to fol a basi PASA d'evil of a to guidool a'ade z (2) 彼女があなたに怒っているのは当然だ。 It is (for / natural / you / angry with / be / to / her). om gloro base on avail I as 宝不さ玉会 3 om eqlar barst on (3) 妹が夜ふかしするのはめずらしいと思う。 (2) I think (unusual/my sister / stay / to / it's / for) upl late. 100 Lat of yu tead sillal terW HIS GJELDED MIROS PROSVITU TOGE (4) 私の長所は,決して落ちこみすぎないことだ。1000 ( My good point (be / to / depressed / is / too / never) of a bit uovo woH C (1) CONST 8 7 与えられた状況に合うように ( )内の語句を並べかえ, 全文を書きなさい。 ただし, 不要な語 句が1つずつ含まれています。 CD (1) 状況 医師から食生活を改めるよう言われたので、私は…。 I (not/ eating / eat / decided / a lot of /to/ sweets). 07-11-not eating/cated 13/2014 bro bothate 7 of advice. BORARSTO ENNUJAS LEBET CAS (2) 状況 ルーシーは最近悩みがあり、だれかに相談したいのですが・・・。 he of htpal chu Lucy doesn't (ask/know/who / for /to/ bawala a no ixats qode of CUS LOT- (3) 状況 最近, 地震が多いことを受け, ホームルームで先生がひと言。 We had better (what / case/ do / consider / to / of / in / doing) emergency. JON TOTO + ton en 08) a 16 red blor. I 8 [ ]内の語を参考にして~…に自由に語句を入れ, オリジナルの英文をつくりなさい。 れ、オリジナ 28-1-571-7 CD (1) 私が~することは簡単だ。 [easy / to ] (2)~(人)は私に….する方法を教えてくれた。[teach] 51

回答募集中 回答数: 0
数学 高校生

(2)線を引いたところから分かりません💦 教えてください😭

=) 基本例題 43 対偶を利用した命題の証明 文字はすべて実数とする。 対偶を考えて、次の命題を証明せよ。 (1) x+y=2 ならば「x≧1 またはy≦1」 (2) ²+626 ならば 「la +6/>1 または |a-6|>3」 CHART & SOLUTION 対偶の利用 命題の真偽とその対偶の真偽は一致することを利用 (1) x+y=2 を満たすx,yの組(x, y) は無数にあるから、直接証明することは困難であ る。 そこで,対偶が真であることを証明し,もとの命題も真である, と証明する。 条件 「x≦1またはy≧1」の否定は 「x>1かつy>1」 (2) 対偶が真であることの証明には,次のことを利用するとよい。 A≧0, B≧0 のとき A≦B ならばA'≦B2 (p.118 INFORMATION 参照。) 解答 (1) 与えられた命題の対偶は 「x>1かつy>1」ならば x+y=2 これを証明する。 x>1, y>1 から x+y > 1+1 すなわち x+y >2 よって, x+y=2 であるから, 対偶は真である。 (IN したがって,もとの命題も真である。 員 (2)与えられた命題の対偶は 「|a+b≦1 かつ |a-6≦3」 ならば d² +626 43 これを証明する。 |a+b|≦1,|a-6≦3から (a+b)²≤1², (a−b)² ≤3² (a+b)²+(a−b)² ≤1+9 よって ゆえに よって したがって,もとの命題も真である。 2(a²+6²) ≤10 a²+62≦5 ゆえに, 対偶は真である。 p.76 基本事項 6 r=as+2 POINT 条件の否定条件 p, g の否定を,それぞれ , gで表す。 かかつかまたは g PNQ=PUQ pまたはg かつ PUQ=PnQ ⇒αの対偶は gp <x>a,y>6 ならば x+y>a+b (p.54 不等式の性質) |A|²=A² a+b2≦5 56 から a²+ b² <6 30 79

回答募集中 回答数: 0
数学 高校生

61.1 このような記述でも大丈夫ですよね??

0000 式という えると の2 a+by^- 201 X [日本 2行目の式 1 x 解答 を断ってから 一割る。 なお (1)xを1の3乗根とすると 程式の左 ゆえに x³-1=0 (左辺=2 したがって を入れ 1-1- x この式と 1 ot Hit 基本例題 61 (1) 1の3乗根を求めよ。 (2)1の3乗根のうち, 虚数であるものの1つをとする。 (ア)2も1の3乗根であることを示せ。 1 えることが 1 指針 (1) (2) (1) w²+w³, +1+1, (w+2w²)²+(2w+w³²)² iznenkok. 2 (2) ア @= これを解いて, 1の3乗根は -1+√3i 2 練習 61 1の3乗根とその性質 基本58 3乗してαになる数,すなわち、方程式x=αの解を,αの3乗根という。 (1)で求めた方程式x=1の虚数解を2乗して確かめる。 (ア) (イ)は方程式x²+x+1=0, x=1の解→ ²+ω+1=0, ω²=1 2 -√3 i 4 口を よって, w2も1の3乗根である。 -91+2 (1) ω は方程式x+x+1=0, x=1の解であるから ω'+ω+1=0,ω'=1 よって x-1=0 または x²+x+1=0 -1+√3 i 2 とすると i 0 ² = ( = 1 + 2√³²)² =. 1-2√3 i+3i²_-1-√3i 2 とすると x³ =1 「POINT」 1. w²=(1-√3i)°_1+2√3i+3p _ _1+√3i 2 141 w² (x-1)(x²+x+1)=0 w²+w=(w³)² w+(w³) ² w²=w+w²=-1 w+1+w² w² よって また -=0 W ω'+ω+1=0から, w2=-ω-1 となり (w+2w³)²+(2w+w³)² = {w+2(-w-1)}²+(2w-w-1)² =(-w-2)²+(w-1)²=2w²+2w+5 +1= =2(-ω-1)+2+5=3 00000 (1) 200+50 (3) (w200+1)100+(ω100+1) 10 +2 3次方程式の解は複素数の 範囲で3個。 ω はギリシャ文字で、 オ メガ」と読む。 (検討) x=1の虚数解のうち、どち としても,他方が となる。よって、1の3乗根 it 1, w, w¹ ω'=1 を利用して, 次数を 下げる。 ω=-ω-1 を利用して、 次数を下げる。 12(w²+w+1)+3=2-0+3 としてもよい。 1の虚数の3乗根の性質 ①2+ω+1=0 ② ω'=1 がx2+x+1=0の解の1つであるとき,次の式の値を求めよ。 1 1 w² p.110 EX44 99 2章 11 高次方程式

回答募集中 回答数: 0