学年

教科

質問の種類

数学 高校生

この問題、アイはなんで2枚目のように解いたらダメなんですか?🙇‍♂️ 解答みたらめっちゃ簡単だったんですけど、2枚目のように確率ぶんの確率みたいに解く時も無かったですっけ?その違いはなんですか?🙇‍♂️

第5章 場合の数と確率 95 基本 例題 39 条件付き確率 男子58人, 女子42人の生徒100人に数学が好きか嫌いかを聞いたところ, 好き と答えた生徒は40人で,そのうち男子は28人であった。また, 好きでも嫌いで もないという回答はなかった。 この100人の中から1人選ぶとする。 選ばれた1人が女子のとき, その生徒が 数学が好きである確率は ア イ である。 また, 選ばれた1人が数学が嫌いであ るとき,その生徒が男子である確率は ウ である。 I POINT! PA(B)= = n(A) 事象A が起こったときの事象Bが起こる条件付き確率P (B) は n(A∩B)_P(A∩B) B B at P(A) A n(ANB) n(ANB) n(A) A が起こるという前提のもとで,Bが起こる An (A∩B) (A∩B)n(A) 確率・・ 右の表の n(ANB) n(A) の値。 計n(B) n(B) n(U) (Uは全事象) 解答 選ばれた1人が女子であるという事象を W, 数学 素早く が好きであるという事象をAとすると n (W)=42, n (WA)=40-28=12 解く! 表を利用。 よって、求める確率はP(A)=nWNA)_12_72 n(W) 42 イク 選ばれた1人が数学が嫌いであるという事象をB, 男子で あるという事象をMとすると 好嫌計 男子 283058 女子 1230 42 計4060 100 = ◆ 「女子の中で数学が好きであ る人数 ②好 の割合」 男子 28 30 58 女子 1230 42 n(B)=100-40=60,n (B∩M)=58-28=30 計4060 100 よって、求める確率はP(M)= n (B∩M)_30_1 = n(B) 60 2 「数学が嫌いである人の中で 男子の人 ③好 数の割合」 男子 283058 女子 1230 42 計40 60 100

未解決 回答数: 1
数学 高校生

高一数学です。(2)がわかりません。なぜ絶対値なのに二乗するんですか?

基本 例題 43 対偶を利用した命題の証明 文字はすべて実数とする。 対偶を考えて,次の命題を証明せよ。 (1)x+y=2 ならば 「x≦1 または y≦1」 (2)2 +626 ならば 「|α+6|>1 または |α-6|>3」 CHART & SOLUTION 対偶の利用 00000 p.76 基本事項 6 2章 6 命題の真偽とその対偶の真偽は一致することを利用 (1)x+y=2 を満たすx, yの組 (x, y) は無数にあるから,直接証明することは困難であ る。そこで,対偶が真であることを証明し, もとの命題も真である, と証明する。 条件 「x≦1 または y≦1」 の否定は 「x>1 かつ y>1」 (2) 対偶が真であることの証明には、次のことを利用するとよい。 解答 A≧0, B≧0 のとき A≦B ならば A'≦B2 (p.118 INFORMATION 参照。) (1) 与えられた命題の対偶は 「x>1 かつ y>1」 ならば x+y=2 これを証明する。 x> 1, y>1 から x+y>1+1 すなわち x+y>2 よって, x+y=2 であるから, 対偶は真である。 したがって,もとの命題も真である。 麺 (2) 与えられた命題の対偶は 「la +6≦1 かつ a-b≦3」 ならば2+b2<6 これを証明する。 ←pg の対偶は g⇒ b ←x>a,y>b ならば x+y>a+b (p.54 不等式の性質) 0 論理と集合 = 0 される |a+6|≦1, |a-b≦3から (a+b)≤12, (a-6)²≤32 ←|A|=A2 >1 よって (a+b)2+(a-b)2≦1+9 ゆえに 2(a²+b²)≤10 よって a²+b²≤5 ゆえに、対偶は真である。 したがって,もとの命題も真である。 ← ' + b'≦5 と 56 から a2+62<6 S POINT 条件の否定条件p, gの否定を、それぞれp, gで表す。 かつ または -PNQ=PUQ またはq かつ PUQ=PnQ PRACTICE 43° 文字はすべて実数とする。 次の命題を, 対偶を (1)x+ya ば 「xa-b または y>b」 (2)xについての方程式 ax+b=0 がただ1つ して証明せよ。 もつならば

未解決 回答数: 0
数学 高校生

この基本例題27の(2)が解説を読んでもよくわからず、もう少し詳しく教えて欲しいです。お願いします。

300 基本 例題 27 同じものを含む順列 00000 J,A,P,A,N, E, S, E の8個の文字全部を使ってできる順列について、 次のような並べ方は何通りあるか。 (1) 異なる並べ方 (2)JはPより左側にあり,かつPはNより左側にあるような並べ方 CHART & SOLUTION p.293 293 基本事項 2 同じものを含む順列 |1 そのまま組合せの考え方で n! ②公式 p!g!r!...... (p+gtr+=n)を利用 0 ここでは,上の②の方針で解く。 (2) まず, J, P, N を同じ文字Xとみなして並べる。 並べられた順列において、3つのX を左から順にJ,P,Nにおき換えれば条件を満たす順列となる。 例:XAXAXESE と並べ, JAPANESE とおき換える。 解答 (1)8個の文字のうち, A, Eがそれぞれ2個ずつあるから 8! 2!2!1!1!1!1! 8.7.6.5.4.3 2.1 -=10080 (通り) ←1!は省略してもよい。 別解 8個の場所から2個のAの位置の決め方は 残り6個の場所から2個のEの位置の決め方は 残り4文字の位置の決め方は 4! 通り C2通り ①の方針。 C2通り よって 8C2×62×4!= 8.7 6.5 -X -×4・3・2・1 2.1 2.1 ←積の法則。 =10080 (通り) (2) 求める順列の総数は, J, P, Nが同じ文字, 例えばX, X, X であると考えて, 3つのX, 2つのA, 2つのE, 1つのSを1列に並べる方法の総数と同じである。 8! 8.7.6.5.4 よって -1680 (通り) 3!2!2!1! 2.1×2.1 別解 1 の方針で解くと 8C3 X5C2 ×3C2×1 8-7.6 5.4 -x3x1 3・2・12・1 =1680 (通り) POINT 並べるものの位置関係が決められた順列 位置関係が決められたものを すべて同じものとみなす PRACTICE 27Ⓡ internet のすべての文字を使ってできる順列は通りあり、そのうちどのも どのeより左側にあるものは 通りである。 [ 法政大 ]

未解決 回答数: 1
数学 高校生

ステップ1の単位円にした時の書き方がわかりません。そもそも√2/2の位置とかがわからないのでその考え方も教えてほしいです。 ステップ2と3は全くわかりません

STEP 1 単位円をかき, 軸に平行な直線を引く (1) 単位円の場合, sin は ① x 座標に対応するので, 単位円と直線 ① == √2 y (cos 0, sin0) 2 をかく。 sin (2) 単位円の場合, cost は ② . y 座標に対応するので, 10 単位円と直線 ② √3 2 2 をかく。 O coso 1 XC 下の図に直線をそれぞれかきこんでみよう! y↑ このとき点(1,0)をA, 単位円と直線の交点をP とすると, 求める 0 は∠AOP である。 (1) (2) y↑ 1 -1 1 X -1 1 XC STEP 2 直角三角形をつくり、内角の大きさを調べる 0° 180° なので, 単位円のうちx軸の 上側にある半円の部 分だけを考える。 点A, 点Pもかきこもう! TAA E STEP1 でかいた点Pからx軸に引いた垂線とx軸との交点をHとし, 直角三角形 POHをつくる。 (1) 直角三角形 POH において, OP =1で,Pの① 座標が であることから、直角三角形 POH は辺の 長さの比が1:1:√2の直角三角形であり, ∠POH= ③ である。 2 (2) 直角三角形 POH において, OP =1で, Pの 交点Pが2つできるとき直角三角形 POH も 2つできるが、この2つの直角三角形はy軸に 関して対称であり,∠POHの大きさは等しい。 ② √3 座標が ・であることから, 直角三角形 POH は辺の長さの比が2:1:√3 の直角三角形であり, 2 ∠POH= ④ である。 STEP 3 直角三角形の内角を用いて, 0 を求める (1) ∠POH= (3 °であるから, 0=∠AOP= ③ ⑤ 90°∠AOP≦180° の ときは, (2) ∠POH= °であるから,=∠AOP= ⑥ ZAOP=180°-ZPOH である。 確認チェック 以下の項目にチェックを入れよう。 □ ワークに最後まで取り組んだ。 POINTがわかった 次のページからのステップアップ問題に取り組もう

未解決 回答数: 1