学年

教科

質問の種類

数学 高校生

1番よくわからないです

目の方程式を 基本84 =-4x+5 ] を満たす の例 [2] を満たす 円の例 半径 2 (t,s) が直線 +5 上にあるか -4t+5 ⇔A=±B がx軸の上側 がx軸の下側 OST x2+y2+bx+my+n=0の表す図形 日本 例題 87 (1) 方程式x2+y2+6x-8y+9= 0 はどのような図形を表すか。 方程式 を求めよ。 x2+y2+2px+3py+13 = 0 が円を表すとき、 定数の値の範囲 p.138 基本事項 1 CHART & SOLUTION arty'+lx+my+n=0の表す図形x, yについて平方完成する (²+2+2 x + ( ₂ ) } + {y² + 2. 2 y + (7) } − ( 2 ) + (2) -- ((x+ 2) + (x + 2)² = - 1²+ m²-4n 4 14+ m²-4n>0 DEZ, 40(-21/1, の形に変形。 m 中心(1/21)半径 (1) ゆえに (x+3)²+(y−4)²=16 よって, 中心(-3,4), 半径4の円を表す。 (2) (x²+2px+p²) よって したがって (x2+6x+9)+(y²-8y+16)=9+16-9 x+p²) + {y² + 3py + ( ²₁ p)²}=p² + ( 2 P) ² - 13 121= (x+p)² + (y + 3 p)² = 13²-13 ゆえに 4 13 この方程式が円を表すための条件は p²-4>0 ゆえに in として, √1²+ m²-An 2 p<-2,2<p p²-13>0 (p+2)(p-2)>0 の円を表す。 HINFORMATION x2+y2+bx+my+n=0の表す図形 方程式x2+y2+bx+my+n=0 が円を表さない場合もある。 例1 方程式x2+y^2+6x-8y+25=0 の表す図形 変形すると (x+3)+(y-4)²0 ←右辺が 0 両辺にx,yの係数の半 分の2乗をそれぞれ加 える。 ← x,yについて それぞ れ平方完成する。 実数の性質 A,Bが実数のとき A2+B2≧0 143 これを満たす実数x, y は, x= -3, y=4 のみである。 よって、方程式が表す図形は 点(-3, 4) 例2 方程式x2+y^+6x-8y+30=0 の表す図形 変形すると (x+3)+(y-4)²=-5|←右辺が負 これを満たす実数x, y は存在しない。 よって, 方程式が表す図形はない。 等号は A=B=0 のときに限り成立。 PRACTICE 87② 10 方程式x^2+y2+5x-3y+6=0 はどのような図形を表すか。 1=2-1 (2) 求める 方程式x2+y2+6px-2py+28p+6=0 が円を表すとき,定数の値の範囲を

回答募集中 回答数: 0
数学 高校生

答えを見てもよくわからないので教えてもらいたいです!

AX の和 9,35 用 確率と漸化式 (1) 日本 例題 37 00000 12, 3, 4,5,6,7, 8 の数字が書かれた8枚のカードの中から1枚取り出し てもとに戻すことをn回行う。 この回の試行で、数字8のカードが取り出 をnの式で表せ。 される回数が奇数である確率 CHART 確率と漸化式 2回目と (n+1) 回目に着目 & SOLUTION 回の試行で、数字8のカードが取り出される回数が奇数である n 確率がpn であるから, 偶数である確率は 1-pr (n+1)回の試行でDn+1 を求めるには, 次の2つの場合を考える。 n回の試行で奇数回で, (n+1) 回目に8以外のカードを取り出す [1] n n [2] 回の試行で偶数回で, (n+1)回目に8のカードを取り出す 解答 (n+1)回の試行で8のカードが奇数回取り出されるのは, [1] n回の試行で8のカードが奇数回取り出され, (n+1)回目に8のカードが取り出されない [2] n回の試行で8のカードが偶数回取り出され, (n+1)回目に8のカードが取り出される のいずれかであり, [1], [2] は互いに排反であるから 7 Pn+1=Pn• g + (1 − Pn) • _ _ = ³ / Pn + = = = 3 8 LO 変形すると したがって Pn+1 Pi +- 2 - ³ (P-1) 4 1 3/YOSH 1 1 1 2 8 2 また よって,数列{ po-12/2} は初項 - 18 公比 24 の等比数列で 3 3 あるから 1 2 - 3/3\n-1 8 4 3 8 Pn 1 1/3\n pn = ²/2 - 1/2 (³)" - ²1 (1-(³)"} Pn = 24 (1) P1, P2 を求めよ。 (C) 1 (3) Pm を求めよ。 D 8 98* 30 (+1)回目 inf. ① 確率の加法定理 事象 A,Bが互いに排反 (A∩B=①) のとき P(AUB)=P(A)+P(B) ② 独立な試行S, Tで、 Sでは事象A, Tでは 事象Bが起こる事象をC とすると P(C)=P(A)P(B) =-2a+1/2 を解くと a=²1/22 は 1枚目のカード が8の確率であるから 1 Aneke PRACTICE 37 ③ さいころをn回投げるとき,6の目が出た回数をXとし,Xが偶数である確率をP とする。 (2) P1 をP を用いて表せ。 (1) [学習院大 ]

回答募集中 回答数: 0
数学 高校生

(3)の質問です。 2200=〜(k≧5)までは分かりました。 そこからk=5を試せませんでした。どう試そうと思うのですか? またk^3の位に注目して〜のところでは、例えばk=6のとき、5k^3は2200より小さくなると思うのですが、なぜこの不等式が成り立つのですか? ... 続きを読む

第2問~第4問は,いずれか2問を選択し、 解答しなさい。 第3問 (選択問題(配点20) 自然数Nを7進法で表すと3桁の数 abc (7) となり, 8進法で表すと3桁の数 cba(s) になるとする。 (1) このような自然数Nを求めよう。 a, b, c について が成り立つ。 変形すると アイla-b- アイ b= a= と オ ウエ c=0 ウエ の最大公約数は カキ a- クケ となる。よって, 条件を満たす α, b,c は b= サ である。 したがって,Nを10進法で表すと, N = C= オ スセソ であるから、この等式を である。 (数学Ⅰ・数学A 第3問は次ページに続く。 (2) Nを5進法で表すと, タチツテ である。 (5) (3) 10N を進法で表すと, 4230(k) となった。 このとき, ト k= となる。 (4) 10Nの正の約数は全部でナニ個ある。 これらのうち, 2の倍数はヌネ 個, 4の倍数はノハ 個 8の倍数は ヒ 1個ある。 したがって10N のすべての正の約数の積を2進法で表すと,末尾には 0 が連続 して フへ 個並ぶ。 LE

回答募集中 回答数: 0