学年

教科

質問の種類

数学 高校生

数Ⅲ 基礎門40(3) 解説を読んでも理解出来ませんでした💦詳しく教えてください🙇‍♀️

68 第3章 40 逆関数 (2)とするとき。 次の問いに答えよ。 (y=f(x)の逆関数y=f(x) を求めよ.バー) ② 曲線 C:y=f(x) と曲線 Ca:y=f'(x) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C. の交点の座標の差が2であるとき, aの値を求めよ。 〈逆関数の求め方〉 (012) ( y=f(x)の逆関数を求めるには,この式を x=(yの式)と変形し, xとy を入れかえればよい 〈逆関数のもつ性質〉 I. もとの関数と逆関数で,定義域と値域が入れかわる eto Ⅱ. もとの関数と逆関数のグラフは, 直線 y=x に関して対称になる 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき 〈逆関数のもつ性質〉を上手に活用することが必要です。 この基礎問では,IIが ポイントになります。 解答 (1)y=√ax-2-1 とおくと, √ax-2=y+1 よって, y+1≧0 より,値域は y≧-1 ここで,両辺を2乗して, 1大切!! ax-2=(y+1)2 . a x=1/2(y+1)+1/2 (y-1) 2 a *>, ƒ³¹(x) = 1½ (x+1)²±²² (x≥−1) a a 【定義域と値域は入れ かわる 注 「定義域を求めよ」とはかいていないので,「x≧-1」は不要と思う 人もいるかもしれませんが、xの値に対してyを決める規則が関数で すから、xの範囲,すなわち, 定義域が「すべての実数」でない限り は,そこまで含めて「関数を求める」と考えなければなりません. ey=f(x)とy=f(x)のグラフは、凹凸が異なり,かつ,直線

回答募集中 回答数: 0