学年

教科

質問の種類

数学 高校生

次の(2)の問題で青線から青線の移行がよくわからないのですがどなたか解説お願いします🙇‍♂️

例題 57 "" の値 ★★★ 1 1 (1)複素数zz+ √3 を満たすとき,290 + の値を求めよ。 Z 2.30 = 1 1 = {cos(±²² 7) + ¡sin(±²² 7)}”* + {cos(± 2/37) + isin (±²/7)}" 2n 2n 土 2n = cos( ± 21/17) + isin (± 2/2 7 ) + cos(+27) + isin (+237) (2) 複素数zz+ = 1 を満たすとき, w = z" + Z の値を求め z" = COS 2n 3 ±isin 2n 3 2n +cos π干isin 3 2n π 3 よ。 ただし, n は整数とする。 2n = 2 cos 思考プロセス (1)+(2+1) と考えるのは大変。 《ReAction 複素数の乗は、 極形式で表してド・モアブルの定理を用いよ 例題 55 具体的に考える 2+112=1/3より2-3z+1=0 ⇒ 極形式 2= 1 解 (1) z+ = √ √3より 2°-√3z+1=0 Z よって (複号同順) 3 (ア)n=3k(kは整数) のとき w=2cos (2kz)=2 (イ) n=3k+1 (kは整数) のとき w = 2cos(2kz+ 237) = 2 cos² = (ウ)n=3k+2 (kは整数) のとき w=2cos cos(2kz+ (ア)~(ウ)より, kを整数とすると 4 =-1 = 2 cos =-1 2 (n=3k のとき) √√(3) -4・1・1 2 = 3 土 2 2 1 i 2 = cos(土)+isin (+)(複号同順) このとき, ドモアブルの定理により 2 = {cos(+1) +isin(土)} 土 = cos(±5π) +isin (±5π) (複号同順) =-1 w= |-1 (n=3k+1,3k+2 のとき) 1 Point z+ 1 =kのときの " + の値 Z z" 1 複素数zが z+ = k ... ①(kは実数) を満たすとする。 2 ① より z-kz+1=0 この2解は互いに共役な複素数z, zであるから, 解と係数の関係 よって |z|2=1 すなわち |z|=1 ゆえに, z=cos+isind とおくと z"=cosn0+isinn0 したがって 1 1 ゆ = =-1 2.30 -1 2" + したがって 2.30 + 1 =-1-1=-2 (2)+1 =-1 より 2+z+1=0 2次方程式の解の公式を 用いてzの値を求める。 よって このことから,z+ はnの値に関わらず実数となることも分 2" =2"+(2")-1 = (cosnd+isinn)+(cosn0+isinn0)-1 = (cosnd+isinn)+(cosn0-isinn0) =2cosno 1 34 13 2 -1±√3i 2= 2 = + =cos (2) +isin (土) (複号同順) O このとき, ドモアブルの定理により 1 w = 2" + =z+zn 23 23 T x 1 練習 57 (1) 複素数zが z+ == 2 を満たすとき, 12 + 2 1 (2) 複素数zが z+- =√2 を満たすとき, w=z 2.

未解決 回答数: 1
数学 高校生

答えを見てもよく理解できません( ; ; )教えてください🙇‍♂️

●●78 例題 5 正四角錐の側面に接する半球 右の図の正四角錐 A-BCDE におい て, AB=AC=AD=AE=3√3, BC=CD=DE=EB=6であり,内部に 半球がある。 この半球の底面は正方形 BCDE 上にあり, 球面は正四角錐の4 つの側面と接している。 このとき、 半球の半径を求めよ。 い D 解答 辺 BC, DE の中点をそれぞれM, N, 球の中心を0とする。 △ABM において AM=√√(3/3)2-3°=√18=3√2 考え方) 辺BC, DE の中点と点 を通る平面で切った断食 で考える。 3√√2 r r 6 △ABCの辺BC, CA, AF このとき, DEF の重心 中線AD と線分 E 明せよ。 とする。 CE=EA 中点連結定理から AF//ED また,BF = FA. 中点連結定理か AE//FD ① ② より 対 よってEP= 同様に,中線 それぞれ Q したがって, 交点となり, すなわち, BC = 6 より BM=CM=3 作る 3点A, M, Nを通る平面で切った断面で考える。 M 3 0 MN=CD=6より MO=NO=3 △AMO において AO=√(3/2)^2=√9=3 △AMN の面積を2通りに表すと TV=29 1/2(AM+AN)=1/2MNAO 中 が成り立つ。すなわち (3√/2+3√2)=-6.3 よって r= 3√2 2 (問題 5 正四角錐 A-BCDE の高さは12, 底面の正方形の1辺の長さは10であ る。この内部にある球が正四角錐のすべての面に接しているとき,球 A の半径を求めよ。 AH=12.ALL MH.MH=NH MN=CD=10 MH=NH=5 AM=AN=123+52=5169=13 1/12 (AM+MN+AN)=1/2MN.AH 1/2(13+10+13)=1/2x10.12 rs 3 M&HS N サ B 問題6 ABCの内心をIc それぞれP,Q,R とを証明せよ。

未解決 回答数: 1