学年

教科

質問の種類

数学 高校生

問題44の(3)や、問題45の(2)のような式変形を、こんな天才的な発想出来ないでしょ!と思うのは僕だけでしょうか。解説を見れば何をしているのかはわかるのですが、問題によってやり方も様々で、慣れとかでどうにかなるものなのかと思ってしまいます。 何かコツや、式変形の対応デッキ... 続きを読む

基礎問 76 MAN AV 44 はさみうちの原理(I) 次の問いに答えよ. (1) すべての自然数nに対して, 2">n を示せ. (2) 数列の和 Sm= (1)をnで表せ。 (n=k(k≧1) のとき,2">k と仮定する. 両辺に2をかけて, 22k ここで, 2k-(k+1)=k-1≧0 (≧1 より) ..2'+'>2k≧k+1 すなわち, 2+1>k+1 よって, n=k+1 のとき, ① は成りたつ. (i), (ii)より, すべての自然数nについて, 2">n は成りたつ. (3) lim Sm を求めよ. (1) 考え方は2つあります。 ... 1 2 n (2) Sm = + 4° 4' +・・・+ ...... ② 4"-1 1/Sn= 1 n-1 n +・・・+ + ......3 4₁ 4"-1 4" ② ③ より 3 (IIB ベク4 ) Sn= + 1 1 n -(+) +...+ n 4' 4"-1 -Sn= 4 1 4" I. (整数)” を整式につなげたいとき, 2項定理を考えます。 II. 自然数に関する命題の証明は数学的帰納法. (IIB ベク137 (2) 本間のΣの型は, 計算では重要なタイプです. (IIB ベク121 S=Σ(kの1次式)rk+c (r≠1) は S-S を計算します。 (3) 極限が直接求めにくいとき, 「はさみうちの原理」 という考え方を用います。 bn≦a≦cm のとき .. Sn= n (3)(1)より2">n だから, (2")'>n . 4">n²=0<< 20< n 4 4-1 n lim40 だから、はさみうちの原理より lim 11-∞ n n - 4-1 -=0 limb= limcn=α ならば liman = α →00 11-00 この考え方を使う問題は,ほとんどの場合, 設問の文章にある特徴がありま す. (ポイント) さらに, lim lim (14) "=0 より lim.S,=- 16 11-00 9 「ポイント 解答 (1) (解Ⅰ) (2項定理を使って示す方法) (x+1)"=2,Chr" に x=1 を代入すると k=0 2"=nCo+mCi+nCz+... +nCn n≧1 だから 2"≧Co+nCi=1+n>n .. 2">n (解II) (数学的帰納法を使って示す方法) 2">n ...... ① (i) n=1のとき (左辺) =2, (右辺) =1 だから, ①は成りたつ 演習問題 44 極限を求める問題の前に不等式の証明があれば, はさみうちの原理を想定する 次の問いに答えよ. (1) すべての自然数nについて, 不等式 3"> n" が成りたつこと 数学的帰納法を用いて証明せよ。 "k =215730 (n=1,2, …) とおく。このとき, (2) Sm= 2 k=1 1 n 3 3+1 (3) lim Sm を求めよ. 11-00 が成りたつことを示せ. CS CamScanner 第4章

解決済み 回答数: 1
数学 高校生

まず、確率は誰よりも苦手と言えるくらい悲惨な状況です。その事を理解してもらった上で回答をお願いします🙇‍♀️ この青ラインの所についてですが、何を言っているのかが分かりません。このような質問はあまり良くないことは理解しているのですが、ほんとに分からないので、どなたか猿にで... 続きを読む

ITEM 場合の数 8 同じものを含む順列 チェック! ① (2) (3) ITEM2の 「順列」 は、 全て異なるものの並べ方でした. それに対して,ここでは同じ ものが含まれている場合の並べ方を考えます. ここが「同じもの」をいったん区別して考え公式を覚える ステージ1 原理原則編 場合の数 例題 aaa Do の5枚のカードを1列に並べる方法は何通りあるか. 方針] カード どうし,カード どうしは,区別しないで数えます. 「解答」 カード a 3枚, カード2枚はそれぞれ同じものだから, 求める個数は “割り算”・・・ 5! _5・4・3・210(通り). 3!2! 3.2.2 解説 前 ITEM の 「sC2」の計算と同様, ここでも “割り算” が現れます. その理由も、実は 前 ITEM とまったく同じです. 本間では5枚のカードを aaabb a1 az b1 as b2 a1 az b2 as bi 区別しない 区別しない a ababe という立場で考えなければなりませんが,こ れは直接には “求めづらい”ので, a1 as b1 az bz la ・・・② as az b2 a1 b1 [○○] 区別 [?] のようにどうし,どうしも番号を付し て区別するという別の視点に立ってみます。 すると右図のように①の各々に対して,a, aどうし, bどうし を区別しない aどうし, bどうし を区別する 対応関係を視 6 の番号の違いを考えることで3! 2!通りの②の並べ方が対応します。 ② のように 5 枚全てを区別したときの並べ方は5!通りなので, 求める個数をxとすると, x×3!・2!=5!. 積の法則 求めたい 求めやすい 5! .. x= "割り算” 3!2! 前 ITEM と同じでしたね. [補足] 本間の答えは 5! 5.4.3.2.1 5.4 3!・2! 3・2・1×2! 2! と変形でき,これは前ITEM 例題7 の答え: 6C2 と一致しますね. これは,次のよう にして説明がつきます. cs CamScanner でスキャン 36 → 4.922.32

解決済み 回答数: 1
数学 高校生

60番の(2.ア)と61番の(1)についてですが、なぜ全く同じ問題なのにやり方が異なるのでしょう。どちらの問題も三角関数の合成をし、与えられたθやxの範囲をずらすと思うのですが、その時に上と下の範囲がsin〜とした時に解ける(有名角になる?)ときは61番のようにして、そう出... 続きを読む

99 基礎問 98 第4章 三角関数 60 三角関数の合成 (II) (1) As / のとき,f(x)=√3cosx+sing の最大値,最 小値を求めよ. (2)y=3sinzcosz-2sinz+2cost (OIS)について、 △ (7)t=sinz-cosz とおくとき,tのとりうる値の範囲を求め 1)-(-2)+/12--1 (i)は,2sin 1/2 を計算してもよい。 この場合は、加法定理を利用 します。 (+) (a)は、2sinx を計算した方が早いです. (2)(7)t=sinz-cosz=√2 sin(エース) この程度の合成は、 すぐに結果がだせる まで練習すること ytの式で表せ。 yの最大値、最小値を求めよ. (1) sin=t (または, cosz=t) とおいてもtで表すことができ 精講 ません. 合成して,を1か所にまとめましょう。 (2)IAのZ2で学びましたが、ここで,もう一度復習しておきま しょう. sin, COS, 差, 積は, sin'stcos'z=1 を用いると, つなぐことができる. 「解」 答 (1)/(x)=2(sinz.cos y + cosz.sing) =2sin (+4) 合成する だから、 sin(-4) ..-1≤t≤1 (イ) t2=1-2sincos だから 3sin.rcos.(1-1) " y=1/12 (1-19-21=-12/21-2t+2号/2 y=−3 (t+²²)² + 1/3 (−1≤t≤1) (ウ) y=- 右のグラフより, 最大値 12 最小値 -2 0 2 0 ポイント 合成によって、2か所にばらまかれている変数が1か 所に集まる 第4章 (i) 最大値 7 1/3 = 1/2 すなわち、24のとき (1)-√√√√√6+√2 ・+ = (6)最小値 +1=22,すなわち、エ のとき cs CamScanner でスキャン 演習問題 60 y=cosx2sincosx+3sin's (xls) ...... ① について, 次の問いに答えよ. (1)① を sin2x, cos 2x で表せ . (2) ①の最大値、最小値とそのときのェの値を求めよ。

解決済み 回答数: 2
数学 高校生

ガウスを不等式の中に入れてるのってどういう意味ですか?

基本 例題 23 数列の極限 (6) ・・・ はさみうちの原理 3 △ 45 ①①① (1) 実数x に対して[x]をm≦x< m+1 を満たす整数とする。 このとき, [102] lim 102m を求めよ。 (2) 数列{an) の第n項 α7 はn桁の正の整数とする。 このとき, 極限 [山梨大) logio an lim を求めよ。 72 [広島市大〕 基本21 指針 この問題も、極限が直接求めにくいので、はさみうちの原理を利用する。 (1) [x] をはさむ形を作る。 x]はガウス記号であり (「チャート式基礎からの数学 I+A」 p.121 参照) [x]≦x< [x]+1 が成り立つ。 これから (2) α は n桁の正の整数 10" 'Man<10" (数学ⅡI) (1)任意自然数nに対して, [102] 10°"z<[10%"z]+1 102-1< [102]≦102 1 [102] < 10²n 102n x-1<[x]≦x <[x]≦x<[x]+1 2章 ③数列の極限 2限 [102] をはさむ形。 から 解答 よって 1 limπ 201 102πであるから [102] lim π はさみうちの原理。 102n 12-00 (2) α は n桁の正の整数であるから 各辺の常用対数をとると 10"-1≦an<10" n-1≦10g10an<n 10g1010=n よって 1 log10 an <1 n n lim (1-1) =1であるから lim log10 an 1 はさみうちの原理。 12-00 n 7→80 注注意 はさみうちの原理を誤って使用した記述例 例えば、前ページの例題22の解答で, A 以降を次のように書くと正しくない答案となる。 0<<6 Aから n² 0<lim- <lim → 2 6 n =0 よって lim n2 =0 2 [説明] はさみうちの原理は 818 an≦cn≦bn のとき lima= limb = αならば limc=α →80 n00 これは, 「acn≦bn が成り立つとき, 極限lima, limb が存在し, それらがαで一致する ならば,{c}についても極限limc が存在し, それはαに一致する」という意味である。 72700 72100 において, 存在がまだ確認できていない極限lim を有限な値として存 上の答案では, 在するように書いてしまっているところが正しくない。 正しくは、 前ページの解答のA, B のような流れで書く必要がある。 n² 11-00271 練習 実数 α に対してαを超えない最大の整数を [α] と書く。 [ ]をガウス記号という。 23 (1) 自然数の桁数kをガウス記号を用いて表すと, k =[[ ] である。 (2)自然数nに対して3”の桁数を km で表すと, lim- kn 12-00 n "である。 [慶応大]

回答募集中 回答数: 0