学年

教科

質問の種類

数学 高校生

集合と命題の問題なのですが、151番の(1)(2)(3) と152番の解き方が分かりません。どなたか分かる方解説してください!

110 151* (1) a,bは有理数とする。 √5 が無理数であることを用いて 命題 Ta+6√5=0→a=0かつb=0」を証明せよ。 &Oと仮定する。 このとき at&s=① を変形すると 15-0 Q.bは有理数であるから、①の右辺は有理数であり 等式①は厚が無理数であることに矛盾する したがってb:0 atb55=0にb=0を代入するとa=0 よって与えられた命題は真である (a+3)+(6-5)√5=0 を満たす有理数α, b の値を求めよ。 a,bが有理数ならば、a+3,65はともに有理数 である。よって(1)で証明したことから(a+3)+(b-5)55:0 を満たすとき a+3=0, b-5:0 ゆえに a=-3, b=5 (3) (√5-1)a+b/√5 = 2 + √5 を満たす有理数a, b の値を求めよ。 等式の左辺を展開して整理すると → 例題 38 (-a-2)+(a+b^-1)55=0 a,bが有理数ならば、-a-2,a+b-1はともに 有理数である。よって(1)で証明したことから、有理数a,bが (-a-2)+(a+b-1)55:0を満たすとき -a-2=0 a+b-1=0 ゆえに b=3 BClear a=-2 152x, y, z は実数とする。 次の命題を証明せよ。 x2 >yz かつye<xzならば, xキリである。 xyzかつy<xzならばx=yであると仮定する xyzにx=y を代入すると y² > YZ O y2<xzにx=y を代入すると y² < YZ.. ①と②は矛盾する よってxxかつくってならばメキまである

回答募集中 回答数: 0
数学 高校生

なぜ、一番左と真ん中を比較して=2/3(n+1)√n+1になればいいんですか?

例題 243 定積分と不等式 [2] 自然数nに対して,次の不等式を証明せよ。 Action 数列の和の不等式は, 曲線とx軸で囲まれた部分と長方形の面積の和を比較せよ ....... 1/y=√x が増加関数であることを確認する。 2 y=√xとx軸で囲まれた部分と長方形の面積の和を比較する 32 の不等式に k = 1, 2, ..., n(n+1) を代入し, 辺々を加える 解法の手順・・ 2 ² n√n <√ [ + √² + √√3+ ··· + √ n < 1/3 ( n + 1 ) √n + I 解答 x≧0 y=√xは増加関数である。 自然数んに対して, k-1<x<んのとき √k-1<√x <√k よって .k **b5 √k=1</² √ √xdx < √k すなわち ここで √ √k-1dx <f", √x dx <S", √ dx k-1 k-1 k-1 n+1 ck √k=1<f",√xdx *) √k=1<2/²₁ √x dx より ここで n+1 k=1 n+1 2 √x dx = √ √x dx + √ √x dx + ... + √x dx S k=1k-1 In xx √ √x dx < √k xD k-1 n+1 en+1 2 2 = " " " √x dx = ²/3 [x√x]" " = }} (n+1)√n+1 3 10 2 £₂€ √[+√2+√3+...+√n < ² (n+1)√n+ 1 - ① ... 3 •n+1 k n #₂ √x dx < Ž√ k k=1k-1 k=1 n ・k •n 2", √x dx = √ √x dx + √ √x dx + ... + √ √x dx k=1Jk-1 n-1 2 = ["√x dx = /²/ [x√x]" = ²/3 n√n. 3 したがって, ①, ② より 2 *₂€ ²/² n√n<√[+√² + √3+ ... + √ñ よって ²/² n√n <√ [ + √2 + √5 + . . . + √ñ < ²/² (n+1)√n+ 1 映習 243 2 以上の自然数nに対して,次の不等式を証明せよ。 log(n+1)<1+= 1+1 yl √E √k- √k-1 例題242 両辺に y=√√x 両辺に k-1 k x $11 k-1 k 面積の大小関係を表して いる。 √k< k=1, 2, ..., n+1 を代入して辺々を加える。 k=1,2,..., n を代入して辺々を加える。 例題 次の (1) AC 解法 合 LE (1)

回答募集中 回答数: 0
数学 高校生

数学B青チャートの問題です 解説は理解しているのですが、この問題を斜交座標で解いてみたくてどうやるのか教えてください! 斜交座標と長さが相性が悪いのは分かっていますが、斜交座標で解けそうな気がして気になっちゃいました 解決のヒントになれば良いのですが、|2a-b|=1と|a... 続きを読む

410 00000 重要 例題 19 ベクトルの不等式の証明 (2) 平面上のベクトルa, T が |2a+6=1, |a-36|=1 を満たすように動くとき, 3 · ≤lã+õ|≤· 5号となることを証明せよ。 7 重要 18 指針「条件を扱いやすくするために 20+6=p, a-36=d とおくと、与えられた条件は ||=1, ||=1 となる。 そこで, a +6 を p, g で表して, まず la +6 のとりうる値の範 囲について考える。 la +部は -g を含む式になるから, p.409 重要例題 18 (1) で示した不等式 -|pl|g|pqs|pl|al を活用する。 CHARTとして扱う 解答 2a+b=p ①, a-3=q ② とおく。 (①x3+②)÷7, (①-② ×2)÷7 から a=¾b+79, b=46-¾à よって、a+b=11で、ほ==1であるから |ã + b³²=|¾ß——à³² = 1 (16|5³²—8p•à+|q³²³) 17 8 →→ 49 49 p.q Deze, -pilg|≤p·g≤lpilg|, |p|=|9|=1TB3D³5 = -1≤p.q≤1 17 121, 1-8 slá+b³≤ 17 + 8 + sla+of≤ 25 ゆえに, 49 49 49 49 3 したがって // s≤|ã+b|s- 7 別解](上の解答3行目までは同じ) a+6=11/19より.7(+6)=4D-dであるから, 不等式 |a|-|6|≦ la +6≦|a|+|6|を利用すると |4p|-|-g|≤|4p+(−q)| ≤|4p|+|−ģ| 4|6|-|g|≡|4p-g|4|5|+|g| よって |l=||=1であるから 3≤14p-q|≤5 ゆえに 3≤|7(ã+6)|≤5 ¢*b5 ¾/7/slā+615 2/1/20 €19 3 121 <a, bの連立方程式 [2a+b=p la-3b=g を解く要領。 35 -sä·bs- となることを証明せよ。 121 ◄ ½(¹ñ−ā)·(¹ñ−ā) 等号は と が反対 の向きのとき, 右の等号は とが同じ向きのとき. それぞれ成立。 平面上のベクトルa, F が \54-25|=1, |20-36|=1を満たすように動くとき. p.409 重要例題 18 (2) で示 した不等式。 a の代わりに 4 を の代わりに を代入 *

回答募集中 回答数: 0
数学 高校生

数学B青チャートの問題です 解説は理解しているのですが、この問題を斜交座標で解いてみたくてどうやるのか教えてください! 斜交座標と長さが相性が悪いのは分かっていますが、斜交座標で解けそうな気がして気になっちゃいました 解決のヒントになれば良いのですが、|2a-b|=1と|a... 続きを読む

410 重要 例題 19 ベクトルの不等式の証明 (2) 平面上のベクトルα, F が |2a+6=1, |a-36|=1を満たすように動くとき, 3 2 +6=0 となることを証明せよ。 | 7 重要 18 指針>>条件を扱いやすくするために 2a+b=b, a-36=d とおくと、与えられた条件は |p|=1, ||=1 となる。 そこで, a +6 を p, gで表して,まず la + 6P のとりうる値の範 囲について考える。 la+部はpg を含む式になるから, p.409 重要例題 18 (1) で示した不等式 -|||g|≤p·g≤|ø||g| を活用する。 CHART はとして扱う 解答 2a+b=p ①, a-36=q.. (①x3+②)÷7, (①-② ×2)÷7から ä=¾/b+¾â, ô=—ô-½ å 7 -212/20ID=||=1であるから |ã + b³²= | ¼ ñ——— ã³² = 1 (16|B³²—8p•à+lā³²) ◄(4B¬ā)·(4ñ—ā) ..... よって、a+b= = 1785-9 g 49 49 ② とおく。 ここで,-|pigsp.gs|pig, pl=||=1であるから -1≤p.q≤1 8 25 vožk, 17-3 slä+b³s 17 + 8 +5 ≤lä+óf≤ ²5 ゆえに, から 49 49 49 49 49 したがって -≤|ã+b|≤· 別解](上の解答3行目までは同じ) +6=4-212/10より.7(+6) =4-1であるから 不等式 101-16|≦10+6≦|a| +16を利用すると 3 141-1-q1145+(-a)| ≤|4p|+|-gál 4|p|-|g|≦\4p-g|≦4|p|+|g| よって |l=||=1 であるから 3≤|4p-q|≤5 ゆえに 3≤|7(ã+6)|≤5 **b5/sa+b√5 /1/20 5 sla+bls. <a b の連立方程式 2a+b=p la-36=g を解く要領。 等号は が反対 の向きのとき,右の等号は とが同じ向きのとき, それぞれ成立。 <p.409 重要例題 18 (2)で示 した不等式。 a の代わりに -4 4を の代わりに を代入。

回答募集中 回答数: 0