学年

教科

質問の種類

数学 高校生

77.2 「(1)と同様に」というのは三角形ABCの全ての辺が2:1の比で分けられているから、ということでBQ:QP:PM=3:3:1と考えられるということですよね?実際に計算する訳じゃないですよね?

422 300000 メネラウスの定理と三角形の面積 基本例題 77 面積が1に等しい△ABCにおいて, 辺BC, CA, AB を 2:1に内分する点をそ れぞれL, M, N とし,線分 ALとBM, BM と CN, CN と AL の交点をそれぞ [類 創価大 れ P, Q, R とするとき (1) APPR: RL=7: (2) APQR の面積は 指針 (1) △ABLとCN にメネラウス→LR: RA △ACL と BM にメネラウス→LP: PA これらから比AP : PR: RL がわかる。 (2) BQ: QP PM も (1) と同様にして求められる。 △ABCの面積を利用して, △ABL → △PBR → △PQR と順に面積を求める。 すなわち よって また, 解答 (1) △ABLとCN について, メネラウス AN BC. LR の定理により NB CL RA ■ : 1 である。 ]である。 【CHART 三角形の面積比 等高なら底辺の比,等底なら高さの比 CUEN LR 2.3. RR=1 1 1 RA ゆえに =1 -=1 すなわち △ABL= LR:RA=1:6... ① ACLとBM について, メネラウスの定理により AM CB LP MC BL PA よって LP:PA=4:3...... ② ① ② から AP: PR: RL=3:13:1 (2) (1) と同様にして BQ: QP: PM=3:3:1 よって △PBR= AABL-12123AABC-0272300 △ABC= 3 7 △PQR= 1/1/12 △PBR= B △ABL= 2 7 P 13 LP 1P=1 2 2 PA 1 7 M 3 /R =1 C 右の図の三角形ABCにおいて, AE: EB=1:α, 練習 ③77 BD:DC=16とする。 ただし、α> 0, b>0 である。 (1) AP: PD をa, bを用いて表せ。 (2) APE: △ABCをa, bを用いて表せ。 [宮崎大] p.429 EX51 LR 1 RA 6 LP PA 3 N Q B -2- TKC 定理を用いる三角形と線分 を明示する。 1+m から B 2 AP: PR: RL =l:minとすると n 1 m+n_ 6' l=m=3n 基本76 A EXP D 指 (1 (2) 練 3

未解決 回答数: 1
数学 高校生

右下の赤で囲っているところが納得できません。 どなたかよろしくお願い致します。

より、 01-18 (124) Step Up (p.CF-30) 9 AH-AB <PAB = 8 とすると、 25 このABCの外門の中心をPとする。 このとき, AP・AB ウ である。そこで あるのでB・AC[] である。 APAD MAC と表すと [エ n= [オである。 LA <180° より ∠A=120° したがって、 AB・AC=\AB||AC|cos120° 右の図のように、外心P から辺ABに垂線PHを引 くと、△ABPは AP-BP の二等辺三角形 において AB 3. BC=7. CA-3 とする. このとき > FAの内臓は内頭の図形的意味を考えて、 APAB(AP//AB/cose ABABAB 2.5-3 AB+AC BC_5+3³-7² 2AB・AC APcost=AH=AB AP=mAB + AC と表すと よって AP・AB=JAP|AB|cost = AB AP cose =AB=AB=AB²=25 =25m 第3章 平面上のベクトル AP・AB= (mAB+nAC・AB 15 2 = 5-3-(-4)= =m/AB+nAC AB 15 15 22m+9n 10m-3x=5① にして、 AP-AC-12AC-12 AP・AC= (mAB+nAC) ・AC =mAB.AC+n|AC|² 9 5m-6m=-32 Ist. 0. 829. m=13. n=-11 よって ② より 7 130 11552 I 120イ ウ 13 15 Jo このときの大きさは オ 8 1 2 から求める。 | BCP を ABとACで 先にABAC を求めてもよい ▼Pは外心だから, AP=BP=CP [cose の値を求めなくて 積の図形的意味を考えて、 |AB|| AP | cose =AB・APcosd=AB・A と変形できる. DA-a この点に関 ∠PAC=0 とすると、 AP AC =|AP||AC|cost' |AC|| AP|cost =AC AC=AC 8 9 平面上に四角 AP C が成り立ってい <考え方> 点Pが四角 すべての点 点Pは平面上の任 BA DA=0 同様にして,点Pz AB-CB0 よ 点Pが点Cに一致 BC・DC0 よ 点Pが点Dに一致 AD・CD=0 よ ①.②③ ④ より 逆に、四角形ABCI AP-CP-AP ( =lAPI BP-DP (AP JAP =APP より, AP・CP=BP・L よって, 四角形AB |OA|=3. LOB (1) cose の値を (2) 点Aから直 KLをOA <考え方> (1) OA (2) 直角三角 (1) OA-20B|=4 10A-20B JOA ①に代入して よって, cose:

回答募集中 回答数: 0