学年

教科

質問の種類

数学 高校生

写真の、ピンクの線を引いた箇所で、 (2)より、ベクトルOP=7/9ベクトルOQとありますが、どうやってそこに辿り着くのかがわかりませんでした。考え方を教えていただけませんか。🙇

考え方 (3)AQQB, OP:PQ をそれぞれ求めよ。 思考プロセス 見方を変える 線分 AF 上にある 題 23 交点の位置ベクトル [1] [5] 出 ★☆★☆☆ △OAB において,辺OAを2:1に内分する点をE,辺OBを3:2に内分 する点をFとする。また,線分AF と線分 BE の交点をPとし,直線OP と辺 AB の交点を Q とする。さらに,OA = 4, OB=6 とおく。 (1) OP を用いて表せ。 (2), を用いて表せ。 ma 24 (2)点Qは直線 OP 上の点であるから (-1) 4 1 -ka+ kb ... 3 OQ=kOP とおける OQ= (1-u)a+ub ...④ A AC 3点 0,P,Qが一直線上 BA にあるOQ=kOP また, AQ:QB=u: (1-u) とおくと a = 0.6 0 であり,とは平行でないから, ■係数を比較するときに は必ず1次独立であるこ とを述べる。 TO+AOR an ③ または ④に代入する。 音 3 1 ③ ④ k=1-u かつ k = u 3 9 3 これを解くと k = AO u= 7' ⇒ 線分AF をs (1-s) に内分するとする。 AME noiA 4- 3 平面上の位置ベクトル (1) P OP = (1-s)+s¯ =℗a+® b 線分BE上にある点に対する位置が よって 0Q = a+ -b 7 OP 4- 1 = a+ b 9 3 1次独立のとき (別解〕点 Q は直線 OP 上の点であるから 4a +36 OP= (1-1)+[ 線分BEをt (1 - t)に内分するとする。3=3 9 OQ = kOP=ka+kb ... 3 7 4a+36 = × 9 7 直線 OP 上にある とおける GA+DAS を 再 と変形して考えてもよい。 (2)点Q OQ=kOP = a+b 線分AB上にある JA 4 1 例題 25 参照。 点 Q は辺 AB 上の点であるから -k+ k = 1 1次独立のとき 9 3 ⇒ 線分ABをu: (1-u) に内分するとする。 ⑦ 9 4→ 3 k = より, ③ に代入すると OQ = (1-u)+u] = @a+@b Action» 2直線の交点の位置ベクトルは, 1次独立なベクトルを用いて2通りに表せ Fa+ J 7 14:9/7 7 点Qが直線AB上にあ 11-90 ⇔OQ=sOA+tOB (s+t=1) (3)2 AG 上にあるから JEDAQ:QB = 3 4a+36 =3:4 Q= 2- 5 (1) Eは辺 OA を 2:1 に内分す る点であるから OE=330 点Fは辺 OBを3:2に内分する Es Fenitory 点であるから OF = 2 3 F 7 ② ABCのAおめ (1- また,(2)より OP = -O 7 40A+ 30B P 3+4 9 Q ① B より点 Qは線分ABを F -SP ES OP:OQ = 7:9 となるから OP:PQ = 7:2 3:4に内分すると考えて もよい。 A M.Q AP:PF=s:(1-s) とおくと AB 点Pを△OAFの辺 AF の内分点と考える。 Point... 1次独立であることを述べる理由 OP-(1-s)OA+SOF = (1-s)a+sb 0 5 BP:PE=t:(1-t) とおくと ・ ① A ① ② より 2 1-s=' 241 これを解くと 5 2 t 4- よって OP = 1 + b 9 3 10 OP= (1-10B+108=1/214+(1-1)6 06=0であり,ことらは平行でないから t かつ 1s すると、もう一方に E ... 2 3 REST 点PをOBEの辺BE の内分点と考える。 F B 例えば, a = 0 のとき,2a+365a+3 が成り立つが、両辺のαの係数は等しく ない。 また, a = 26 (a としが平行)のとき,2a+56=3a+36 が成り立つが、両辺 のαの係数は等しくない。 このように,または6=0 または a / bであるときは, 係数が等しくならない 場合があるため、 ≠ 0 6 = 0, a と b は平行ではない」ということを述べている。 s=1-t 係数を比較するときに は必ず1次独立であるこ とを述べる ①または②に代入する。 ができるの 点をQとする。さらに, OA = 4, OB = を用いて表せ 2 0 練習 23 OAB において,辺OAを3:1に内分する点を E, 辺OBを2:3に内分する 点をFとする。 また, 線分AF と線分BEの交点をP, 直線 OP と辺 AB の交 AO(-1)-90 おく。 Jet

解決済み 回答数: 1
数学 高校生

この問題を解く時にkf+g=0を使うらしいのですが、なぜ片方の式にしか文字(今回だとk)がつかないのですか?

「基本例 812直線の交点を通る直線 2直線x+y-4=0 ...... ①, 2x-y+1=0 ...... たす直線の方程式をそれぞれ求めよ。 (1) 点 (1,2)を通る 00000 ②の交点を通り。 次の条件を満 (2) 直線x+2y+2=0 に平行 基本8 指針 2直線 ①,②の交点を通る直線の方程式として、次の方程式 ③を考える。 k(x+y-4)+2x-y+1=0 (々は定数) (1) 直線③が点(-1,2)を通るとして,kの値を決定する。 (2)平行条件ab2-a2b1=0 を利用するために, ③ を x, yについて整理する。 CHART 2直線f=0g=0の交点を通る直線 kf+g=0 を利用 は定数とする。 方程式 x+y-4)+2x-y+1=0 ...... ③ 2直線①②の交点を通る直線 を表す。 (1) 直線③が点 (-1, 2) を通るか ら -3k-3=0 すなわち k=-1 これを③に代入して -(x+y-4)+2x-y+1=0 すなわち x-2y+5=0 ① (-1,2) (2)③をxyについて整理して (k+2)x+(k-1)y-4k+1=0 直線 ③ が直線x+2y+2=0に平行であるための条件は (k+2) 2-(k-1)-1=0 よって k=-5 これを③に代入して -5(x+y-4)+2x-y+1=0 すなわち x+2y-7=0 別解として, 2直線の交 点の座標を求める方法 もあるが、 左の解法は今 後、重要な手法となる (p.168 例題 106 参照)。 検討 与えられた2直線は平 行でないことがすぐに わかるから確かに交 わる。 しかし, 交わる かどうかが不明である 2直線 = 0, g=0の 場合, k+g=0の形 から求めるには,2直 線が交わる条件も必ず 求めておかなければな らない。 ③表す図形が, [1] 2直線 ①②の交点を通る [2] 直線である ことを示す。 [1] 2直線の傾きが異なるから 2直線は1点で交わる。 その交点(x, y) は,x+y-4=0. 2x+1=0を同時に満たすから,kの値に関係なく, k(x+yo-4)+2x+1=0が成り 立ち, ③は2直線 ①②の交点を通る。 [2] ③ を xyについて整理すると (k+2)x+(k-1)y-4k+1=0 k+2=0, k-1=0を同時に満たすkの値は存在しないから,③は直線である。 なお、③は,kの値を変えることで, 2直線 ①②の交点を通るいろいろな直線を表すが、 ①だ けは表さない。 練習 2直線x+5y-7=0, 2x-y-4=0 の交点を通り, 次の条件を満たす直線の方程式 81 をそれぞれ求めよ。 (1) 点(-3,5)を通る (2) 直線x+4y-60に (ア) 平行 (イ) 垂直 133

未解決 回答数: 1
数学 高校生

波線のとこってどういうことですか?

礎問 141 3点が一直線上にある条件 AOAB の辺 OA, OB上に点C,D, OC:CA=1:2 OD:DB=2:1 となるようにとり, ADとBCの交点をEとす るとき 次の問いに答えよ. (1) AE:ED=s : (1-s) とおいて, OE を s, OA. OB で表せ (2) BE:EC=t (1-t) とおいて, OE を t, OA, OB で表せ. (3) OE OA, OB で表せ. 精講 ベクトルの問題では, 「点= 2直線の交点」 ととらえます。だから問 題文に「交点」という単語があれば,そこに着目して数式に表せばよ 00~+40- いのですが,このとき, 「3点が一直線上にある条件」 が使われます. <3点 A, B, C が一直線上にある条件〉 同じ立し 50+70- I. Aが始点のとき AC=AB II. A以外の点□が始点のとき □C=m□A+nB (ただし, m+n=1) 口のs (1-s), (2) のt: (1-t) のところは =(1-s) OA+sOB (2) OE-(1-t)OB+tOČ (3) = (1-1)OB+t(OA) -++-0A+(1-1)OB WOONE SH <3点 B, C, Eが直 線上にある条件 QA+0, OB 0, OAXOB (1)(2)より t 1-s = 1/1314-1- 3-35=t ..... ①, 4/23s=1-t......② ①×3+② より 3 0 2 1-1-s D E1 A B -OÉ を2通りに表し 比べる -ポイント 25:33 7 3s=1 6 S=7 8/17 になる 5-3-37 OE=OA+++OB OA0, OB=0, OAXOB だから」のところは, 「OA と OB は 1次独立だから」と書いてもかまいません。 (2) を使わずに(1) だけでも答えがだせます. OE=(1-s)OA+/3sOB=3(1-s)OC+'sOB 3点B, E, Cは一直線上にあるので 3(1-s)+/23s=1 6 とBCの交点をE」という文章を A, E, D は一直線上にある B, E, Cは一直線上にある かえて, II を利用していることになります. ,この手法では同じベクトルを2通りに表し,次の考え方を使います。 1,60,xのとき(このときは1次独立であるといいます) a+qb=p'a+q'b=p=p', q=q' 解答 ポイント 100,ax のとき 演習問題 141 pã+qb=p'ã+q'b⇒p=p', q=q' △ABCにおいて,辺AB を2:3に内分する点を D, AC 4:3に内分する点をEとし, 直線 BE と直線 CDの交点をP

解決済み 回答数: 1