学年

教科

質問の種類

数学 高校生

数Ⅱ黄チャート 高次方程式 基本例題62を別解2の方法で解かなきゃいけないんですけど、解き方を忘れてしまったので、解説お願いします🙇

104 基本 例題 62 解から係数決定 (虚数解) 00000 3次方程式 x+ax²+bx+10=0 の1つの解がx=2+i であるとき, 実数 の定数α, bの値と他の解を求めよ。 (山梨学院大 p.98 基本事項2.基本61 解 CHART & SOLUTION x=αがf(x)=0の解⇔f(α) = 0 代入する解は1個(x=2+i) で, 求める値は2個 (αとb) であるが, 複素数の相等 A, B が実数のとき A+Bi=0 A = 0 かつ B=0 により,a,bに関する方程式は2つできるから, a,bの値を求めることができる。 また,実数を係数とするn次方程式が虚数解αをもつとき,共役な複素数も解であるこ とを用いて,次のように解いてもよい。 別解 2αとが解であるから, 方程式の左辺は (x-α)(x-2) すなわち x-(a+α)x+a で割り切れることを利用する。 別解 3 3つ目の解をkとして, 3次方程式の解と係数の関係を利用する。 x=2+iがこの方程式の解であるから ここで, (2+i=2°+3・2'i+3.2i+i=2+11i, (2+i)+α(2+i)+6(2+i) +10=0 (2+i)=22+2・2i+i=3+4i であるから 2+11i+α(3+4i)+6(2+i) +10=0 iについて整理すると 3a+26+12,4α+6+11 は実数であるから 3a+26+12+(4a+6+11)i = 0 3a+2b+12=0, 4a+b+11=0 これを解いて a=-2,b=-3 ゆえに、方程式は x-2x2-3x+10=0 f(x)=x-2x2-3x +10 とすると f(-2)=(-2)-2-(-2)2-3-(-2)+10=0 よって, f(x) は x+2 を因数にもつから f(x)=(x+2)(x²-4x+5) したがって, 方程式は (x+2)(x-4x+5)=0 x+2=0 または x2-4x+5=0 x2-4x+5=0 を解くと x=2±i よって, 他の解は x=-2, 2-i 別解 1 実数を係数とする3次方程式が虚数解 2+i をもつ から,共役な複素数 2-iもこの方程式の解である。 よって,x+ax²+bx +10 は{x-(2+i)}{x-(2-i)} すなわち x4x+5で割り切れる。 mfx-2=i と変形して 両辺を2乗すると x2-4x+5=0 これを利用して x+ax²+bx+10の次数を 下げる方法 (別解 1の3行 目以降と同じ) もある。 (p.93 基本例題 55 参照) この断り書きは重要。 A, B が実数のとき A+Bi=0 ⇔ A=0 かつ B=0 ← 組立除法 1-2-3 10-2 -2 8-10 1-4 50 の部分の断り書きは 重要。

回答募集中 回答数: 0
数学 高校生

二枚目の赤丸のとこの考え方ってなんのために使ってるんですか?

1 数と式 1 式の値 太郎さんと花子さんは, 問題1と問題2について話している。 ア めよ。 チコに当てはまる数を求 こう解く! 問題 1 を求めよ。 2次方程式 4x+1=0 • ①の二つの解のうち、大きい方をするとき、2-4a+5の値 花子αは方程式 ①の解だから a²-4a+5 (a2-4a+1)+ とすると楽に計算できるよ。 太郎:αの値を求めてから4α+5 に代入すると計算が多くなりそうだね。 1 STEP 方程式の解の意味を押さえよ う 方程式の解は等式を成り立た せる値である。 ①の右辺が0 であることに着目して、求め る式を変形することを考える。 問題2 b= 35のとき、次の式の値を求めよ。 (1) 62+96+1 (2) 63+562+46 太郎: (26+3)イより,bは方程式 ー =0 の解だから (1) は 62+96+1=(62+ウ b+エ)+オ b ■カキ ■ク ■ケ と計算したよ。 (中略) 花子:私は,(2)で違う解き方をしたよ。 +b+エ=0から より 63= 6+ チ ......③ (2)の式に② ③を代入して計算したよ。 数と式 STEP 式の形に着目し, 構想を立て よう 「(bの1次式)=(平方根)」に 変形して両辺を平方すること で, STEP 1の考え方に帰着 できる。 太郎さんと花子さん の解法は少し異なるが,とも に求める式の次数を低くして いる。 No. 解答 問題1について x = q は, 方程式x4x+1=0の解であるから a²-4a+1=0 A が成り立つ。この式の利用を考えると a²-4a+5=(a²-4a+1)+4 B 問題2について =0+4=4 〔太郎さんの解き方〕 6=3+√5 より 2 CA xα 方程式 f(x) = 0 の解の とき B f(a)=0 α-4a+1のカタマリを作り出す。 26=-3+√5 26+3=√5 両辺を平方して (2b+3)=5 46+126+9=5 1 Date C 右辺が平方根だけになるように 変形する。 -3bt x 3: t

解決済み 回答数: 1
数学 高校生

この極大値と極小値求めてるやつって、どこに代入してるんですかー、? 全然同じ数字になりません

72 定積分で表された関数の極値と最大 (1) f(x) = ∫(-3t+2at+3b) dt の両辺をxで微分して -1 f(x)=3x²+2ax+3b A (2)関数 f(x) は x=-1 および x=3 で極値をとるから, f'(x) = 0 は A a を定数とするとき, xで微分すると,g(x)となる ⒷB f(x)=0 が関数 f(x)が で極値をもつための必要 あることを利用する。 x=-1, 3を解にもつ。 ← B 3a a =-1+3 解と係数の関係により -b=(-1)x3 これより α = 3,b=3 このとき f(x)=3x²+6x+9=-3(x+1)(x-3) また f(x)=(3+6t+9)dt = |-c+30°+9t_ 3t2. -1 =-x+3x2+9x+5 であるから, 関数 f(x) の増減表は次のようになり, x=-1 および x=3で極値をとり、適する。 C したがって a=31, b=31 X -1 ... 3 ... f'(x) 0 + 0 極小 f(x) 7 極大 D 0 32 ☆ よって, f(x)は,x=3のとき極大値5をとり, x=-1 のとき極小値」2 a=3,b=3 が十分条件でお ことを確かめた。 D a 定数とするとき Lg (0) dt = 0 a,b,cは また、 (x-a)(x- f(x)=x となる。 ⑩ + y=f(x) a 2次方程式 f(x) 極値 O の解 以下 (1) p>0. 2次方程 の a+ ② a+ また、 の a< さらに, であることを利用して, 極 (0 (3) (2)よりy=f(x) のグラフは, 右の図 のようになる。 YA f(-1)=(-31+6+ の 32 y=f(x) =0 0≦x≦k において, M = 32 となるよ と求めてもよい。 0 0 ② a こうなんの値の範囲は≧3 Point (2) p<0. 次に,f(x) = 0(x>0) となるxの値 を求めると (1)と同 5 0 3 5 x である の -x +3x²+9x +5 = 0 x³-3x²-9x-5=0 (x+1)(x-5)=0 Point の x>0より x = 5 ( a 図り,0≦x≦において,m≧0となるようなkの値の範囲は≧52 Point 定義域が変化する関数の最大値、最小値を考えるときは,グラフをかい て考えるようにしよう。 また、3次関数 f(x) がx=αで極小 (大) 値 をとるとき,f(x)-f(a) は (x-α) で割り切れる性質を利用して,極 小 (大)値と同じ値をとる x = α以外のxの値を求めることができる。 解 合 f(x) f(x)=x 130

解決済み 回答数: 3
数学 高校生

左の写真の黄色チャートの問題ではKと aの値が出てからさらに場合分けをしているのに、右写真のフォーステでは場合分けをしていないのはなぜですか?

73 重要 例題 43 虚数を係数とする 2次方程式 00000 xの方程式(1+i)x2+(k+i)x+3+3ki=0 が実数解をもつように,実数k の値を定めよ。また,その実数解を求めよ。 CHART & SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る (C) 基本 38 2章 DOから求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解をαとすると (1 + i)a2+(k+i)a+3+3ki=0 この左辺をa+bi (a, b は実数) の形に変形すれば, 複素数の相等により a=0,b=0α, kの連立方程式が得られる。 6 2次方程式の解と判別式 解答 (-8) S 方程式の実数解をα とすると (1+i)a2+(k+i)a+3+3ki=0 整理して (a2+ka+3)+(a2+α+3k)i = 0 α, kは実数であるから, a2+kα+3,a2+α+3kも実数 ①よって大] a2+ka+3=0 ...... ① a2+α+3k=0 ② ①-② から ゆえに (k-1)a-3(k-1)=0 (k-1)(a-3)=0 よって k=1 a=3&c 0=(-a)+x(E- [1] k=1 のとき ① ② はともに α+α+3=0 となる。 これを満たす実数αは存在しないから, 不適。 [2] α=3 のとき ①,②はともに 12+3k=0 となる。 ( x=α を代入する。 a+bi=0 の形に整理。 この断り書きは重要。 素数の相等。 α 2 を消去。 消去すると α-2α²-9=0 が得られ, 因数定理 (p.87 基本事項 2 ) を利用すれば解くことがで きる。 ←D=1°-4・1・3=-11 < 0 | 1:32+3k+3=0 ②:32+3+3k=0 ゆえに k=-4 [1], [2] から 求めるkの値は k=-4 実数解は x=3

解決済み 回答数: 1
数学 高校生

ここの式変形が何があったのかさっぱり理解できません。 どなたか教えていただけると助かります。

49 文字係数の2次不等式 (1) 2次不等式 x2-2(a+1)x+α²+2a≦0 たすxの値の範囲を定数αを用いて表せ. (2)2次不等式 x-2x-3≦0 精講 ...... ②を考える. (ア) ②をみたすxの値の範囲を求めよ. 84 も 考 ...... ・①をみ a すなわち、右 (イ) ①,②を同時にみたすxが存在するような定数αの値の範 囲を求めよ. (1)2次不等式は44で学びましたが, 係数に文字が含まれていると きは,2次方程式にしておいて解を求めたあと,外側,内側という 判断の前に,2つの解の大小を考えないといけません(ポイント)。 (2)(イ)「①,②を同時にみたす」 とは,①をみたすの値の範囲と②をみたす xの値の範囲の共通部分(重なった部分)のことです.それぞれのxの値の 範囲を数直線上に表して考えます。 解答 (1) ① は, 2-2(a+1)x+α(a+2)≦0 よって, (x-a){x-(a+2)}≦0 ここ (税抜) 小が入れか このよう して求める i) a<1 2a-1< ii) a=1 ①は( iii) 1< a<2a ポ a <a+2 だから a≦x≦a+2 ...... ①' (2) (7) 2, (x+1)(x-3)≤0 よって, -1≦x≦3......②' 大切 144 (イ) ①,②を同時にみたす が存在するとき, ①'と②'は共通部分を もつ。 -x a -1 a+2 a 3a+2 上の数直線より, この条件は -1≦a+2 かつ a≦3 よって,-3≦a≦3 <a≦x≦a+2 を 演習問 左から右へ動かす 注 ① ②が共通部分をもたないのは, α > 3 または α+2 <- 1. すなわち, a<-3 または 3<αのときです。 だから, 共通部分をも つのは、それ以外のαのときで, -3≦a≦3 となります。

解決済み 回答数: 1