学年

教科

質問の種類

数学 高校生

数学Aの順列・組み合わせの問題です。左写真の(2)(ⅱ)の問題で、右写真の赤線部から青線部への式変形をどうやってやっているのか分からないので教えて欲しいです。

154 第6 問 94 階乗, Pr, Cy の計算 (1) 次の計算をせよ. 10! (i) 8!-6! (ii) 7! (iii) 7P3 (iv) 6C4 (2)次の式が成りたつことを示せ. (i) *Cr=nCn-r (i) Cr=-1Cr-1+n-1Cr で 精講 (m (1)(i)(i) 記号 n! は 「nの階乗」 と読みますが,これは, nx (n-1)x...×2×1 とnから1までをかけることを表す記 号です.ただし, 0!=1 と約束します. n! は 「異なるn個のものを並べる方法」 の総数を表します. P は「異なるn個のものから個のものを選んで並べる方法」 の総数 を表す記号でこの総数は nx (n-1)x...×(n-r+1) と表せるので n! Pr= が成りたちます. (n-r)! (iv) C, は「異なるn個のものから個のものを選ぶ方法」 の総数を表す記 で,個のものを並べる方法が! 通りあることを考えると n! ,,すなわち,,=- r!(n-r)! が成りたちます。 (2)(i), (ii)ともに n! nCr= r!(n-r)! を使います. 解答 (1)(i) 81-6!=6!(8・7-1)=720×55 18!, 6! を計算してひ くのではなく, 6! で =39600 10!_10・9・8・7! くくるのがコツ = =10・9・8=720 7! 7! 7! (iii) 7P3- = 4! -=7・6・5=7・3・10=210 10を先につくる 6! (iv) 6C4= 4!2! 2 6.5=15 計算がラク

解決済み 回答数: 1
数学 高校生

絶対値を含む方程式(場合分け)の範囲です。 1枚目2枚目のそれぞれ(2)の問題ですが、 X=1、-1を場合分けする際に 1枚目の時は(ⅱ)-1≦X≦1 2枚目の時は(ⅱ)-1≦X<1 なぜ一緒のこの2つ問題では符号が違うのでしょうか。 どういった違いがあるのでしょうか... 続きを読む

基礎問 18 絶対値記号のついた1次方程式 次の方程式を解け. (1) |.r-1|=2 |精講 |x+1|+|x-1|=4 絶対値記号の扱い方は11で学んだ考え方が大原則ですが、 合はポイントⅠの考え方が使えるならば、 場合分けが けラクです. (1) (解I) 解 HO |x-1|=2 は絶対値の性質より1=±2 よって, x=-1,3 (解Ⅱ) -11={ c-1|= だから, x-1 D (x≥1) -(x-1)(x<1) i) x≧1のとき ① は x-1=2 x=3 これは,x≧1 をみたす. ii) x<1のとき ①は -(x-1)=2 :.x=-1 これは, x<1 をみたす. よって, x=-1,3 (2) i) x<-1 のとき x+1<0, x-1 < 0 だから ②は(x+1)(x-1)=4 -2x=4 ... x=-2 これは,<-1 をみたす. i)-1≦x≦1 のとき +10, -1≦0 だから +1-(-1)- これをみたす (注)くのとき +1301>0 1ェー 28-4 ic これは、1<ェを (1) 甘)、血)より (2) A(-1). ら、②は 上の数直線により、 絶対値の 40となる で場合分 はじめにし た すかどう ① ェの値にかか ②x>1のとき (3) が大きくな くー1の ェが小さく ② ポイント いこと エック 演習問題 18 (1) ☆

解決済み 回答数: 1
数学 高校生

絶対値のついた方程式を解くとき、場合分けをした範囲にその範囲を満たす解がない場合があるのはどうしてですか。変なこと言っているのは十分承知なのですが教えていただけると嬉しいです。イメージ的には連立不等・方程式(勝手に作りました)を解いてるみたいなものなのですかね。

A (A≧0 のとき) -A (A<0 のとき) 基本 例題 41 絶対値を含む方程式 次の方程式を解け。 含む不等式の解法 (1)|x-2|=3x8-xS+ | (2) |-1|+|x-2|=x 指針 絶対値記号を場合分けしてはずすことを考える。それには, 141={_^ 00 であることを用いる。 このとき, 場合の分かれ目となるの は, A=0, すなわち, | |内の式=0の値である。 (2) (1)x2≧0と x-2<0, すなわち, x-2<0 x-2≥0 x≧2とx<2の場合に分ける。 x-1<0x1≧0 (2)2つの絶対値記号内の式x-1, x-2が0となるxの 値は,それぞれ1, 2であるから, x<1, 1≦x<2, 2≦x の3つの場合に分けて解く (p.75 ズーム UP も参照)。 2 x 場合の分かれ目 (1) [1] x2 のとき, 方程式は x-2=3x 重要 答 これを解いてx=-1 x=-1はx≧2を満たさ ない。 [2] x<2のとき, 方程式は これを解いてx= x= 2 2 1 [1], [2] から, 求める解は x= 2 場合分けにより,||を はずしてできる方程式の 解が、場合分けの条件を 満たすか満たさないか 必ずチェックするこ (解答の の部分)。 m 最後に解をまとめて (2)[1] x<1のとき,方程式は(x-1)(x-2)=xx-1<0, x-2<0- 不 -(x-2)=3x 1/1 は x<2を満たす。 すなわち -2x+3=x -をつけて」を これを解いて x=1 x=1はx<1を満たさない。 [2] 1≦x<2のとき, 方程式は (x-1)(x-2)=x これを解いて x=1 x=1は1≦x<2を満たす。 [3] 2≦x のとき, 方程式は (x-1)+(x-2)=x す。 x-1≧0, x-2<0 すなわち 2x-3=x 2 <x-1>0, x-2≧ > これを解いて x=3 x=3は2≦xを満たす。 以上から. 求める解は x=1,3 最後に解をまと y=x-2のグラフと方程式 (1)について y=x-2は, x≧2 のとき y=x-2 yy=3

解決済み 回答数: 1