学年

教科

質問の種類

数学 高校生

数2次関数(ⅲ)では-2<k<2のとき、と書いているのに、どうして答えでは違うことを書いているのですか?解説お願いします!

32 第2章 複素数と方程式 17 解の判別 (I) 次のxについての方程式の解を判別せよ. ただし,kは実数と する. 1) 2-4x+k=0 (2)kx²-4.x+k=0 「解を判別せよ」 とは, 「解の種類 (実数解か虚数解か)と解の個数 について考えて,分類して答えよ」 という意味です.ということは 「(1),(2)も2次方程式だから, 判別式を使えばよい!!」と思いたくな が, はたして...... 解答 4.z+k=0 の判別式をDとすると, 2=4-k だから, 方程式の解は次のように分類できる. - k < 0 すなわち, k>4のとき 次のように分類できる. (i) 4-k20 すなわち, k<-22<kのとき D<0だから, 虚数解を2個もつ (ii) 420 すなわち, k =±2 のとき D=0 だから重解をもつ (ii) 4-k20 すなわち, -2<k<2 のとき D>0 だから, 異なる2つの実数解をもつ (ア)(イ)より, h = 0 のとき, 実数解 1個 k<-2,2<kのとき, 虚数解 2個 k=±2 のとき, 重解 -2<k<0,0<k<2のとき, 異なる2つの実数解 注 (2) k=0 の場合と k=±2 の場合は,いずれも実数 ているという意味では同じように思うかもしれませんが, の重解は活字を見てもわかるように元来2個あるものが を指し, 1次方程式の解は、元来1個しかないのです。だ け反

解決済み 回答数: 1
数学 高校生

画像で青線を引いた部分の不等式について質問です。 どうして≦になるのですか? 実数解を求めてるのにこれでは虚数解になってしまわないのか考え方を教えて欲しいです。

問題 (1) a,b,cは実数の定数で,b=a+c とする。このとき、2次方程式 ax+bx+c=0 は虚数解をもたないことを示せ。 0-01-(128) A-2)+1) (2),aは実数の定数とする。 2次方程式x+ (k+a)x+a-k=0がどのようなんの 値に対しても実数解をもつようなαの値の範囲を求めよ。 複素数と方程式 解き方のポイント 判別式をDとする。 (1) D≧0 を示す。 れたりでは式 められる (2) どのようなkの値に対してもD≧0となるようなαの条件を考える。実の話 (1) 解答 (1) 2次方程式 ax2+bx+c=0の判別式をDとすると, 0-01-608-8)+ *n(i+1) D=b2-4ac 0=1(S-)+(61e+") =(a+c)-4ac 248mF2 sato1を求める。 ①······ 0=0 = a² - 2ac+c² () (a-c)2 ≥0 A 次方程式+hx+c=0分]]] をまとすると、 A B-3a²-3+ よって、 2次方程式 ax2+bx+c=0は虚数解をもたない。 10a8-3(a 虚数解をもたないD≧0 (証明終わり) 49 +A D の値を代入す (客)・ (2)2次方程式 x2+(k+a)x+(a-k)=0の判別式を D1 とすると, D1 = (k+α)-4(a-k2) (3) = k2+2ak+α-4a+ 4k =5k2 +2ak+ (α2-4a) (+) 2次方程式が実数解をもつのは D1 ≧0のときであるから, 5k²+2ak+(a²-4a) ≥ 0 B 0 = (10+1)+of+4 B この不等式が,どのようなkの値に対しても成り立つ条件を求めればよ い。 ape) 実数解をもつ10 ① 0=ヤ++) これは,y=5k2 +2ak + (a-4α) とおくとき,このグラフがん軸と共 有点をもたないか接することである。 C 010 5k+2ak + (a-4a)=0の判別式を D2 とすると, 0 = 4+ds- y = 5k² + 2ak + (a²- y=5k²+2ak+(a²-4a) D2 B AS 4 = a² -5(a² - 4a) ≤0 -4a²+20a≤0 a²-5a ≥ 0 a(a-5) ≥ 0 a≦0,5≦a ...... ・( S-= D2 k D2 <0 =0 4 4 グラフは下に凸だから,D20が条 件となる。

未解決 回答数: 0
数学 高校生

剰余の定理についてですが、右下のポイントにある、「fxをgxhxで割った余りとRxをgxで割った余りは等しい」というのはなぜでしょうか? 今まで理屈は考えずに暗記していたため、この定理を用いた問題に出会った時に対応できませんでした。 回答お願いします。

第2章 基礎問 44 第2章 複素数と方程式 26 剰余の定理 (III) (1) 整式P(z) を-1, r2, æ-3でわったときの余りが,そ れぞれ 6, 14, 26 であるとき,P(x) を (x-1)(x-2)(x-3) で わったときの余りを求めよ. (2) 整式 P(x) を (x-1)でわると, 2-1余り, -2でわると 5余るとき,P(x) を (x-1)(x-2) でわった余りを求めよ. 精講 (1) 25 で考えたように、余りはax2+bx+cとおけます. あとは, a, b, c に関する連立方程式を作れば終わりです。 しかし, 3文字の連立方程式は解くのがそれなりにたいへんです. そこで250の考え方を利用すると負担が軽くなります。 (2) 余りをax2+bx+c とおいても P(1) P(2) しかないので,未知数3つ, 等式2つの形になり, 答はでてきません。 解答 .. .. :. -2a-2b+26=6 .-2a-6+26=14 [a+b-10=0 2a+b-12=0 a=2,b=8 よって, R(x)=(2x+8)(x-3)+26 =2x2+2x+2 注 (別解)のポイントの部分は,P(3)=R(3) となることからもわ かります. (2) P(x) を (x-1)(x-2) でわった余りをR (z) (2次以下の整式) と おくと,P(x)=(x-1)(x-2)Q(x)+R(x) と表せる. ところが,P(z) は (x-1) でわると2-1余るので,R(x) も (x-1)^ でわると2x-1余る. よって, R(z)=a(x-1)2+2x-1とおける. ∴. P(x)=(x-1)(x-2)Q(z)+α(x-1)^+2x-1 P(2) =5 だから, a+3=5 . a=2 よって, 求める余りは, 2(x-1)2+2x-1 すなわち, 2x²-2x+1 3次式でわった余り ポイント (1) 求める余りはar' +bx+c とおけるので, P(x)=(x-1)(x-2)(x-3)Q(z)+ar'+bx+c は2次以下 と表せる. P(1)=6,P(2)=14,P(3) = 26 だから, [a+b+c=6 ......① 4a+26+c=14 ...... ② 連立方程式を作る f(x)をg(x)h(x) でわったときの余りをR(x) とす ると f(x)をg(x) でわった余りと R(x)をg(z) でわった余りは等しい (h(x) についても同様のことがいえる) 45 19a+36+c=26 ...... ③ ① ② ③より, a=2, 6=2,c=2 よって, 求める余りは 2x'+2x+2 注25 の考え方を利用すると、次のような解答ができます。 (別解) P(x)=(x-1)(x-2)(x-3)Q(x)+R(z) P(x) はx-3でわると26余るので (R(x)は2次以下の整式) R(x) もェ-3でわると 26余る. <ポイント Barn Score 36x-37 CS よっと P(1)=6,P(2)=14 より,R(1)=6, R(2)=14 わったときの商 演習問題 26 (1) 整式P(x) をx+1, x-1, x+2でわると, それぞれ 3, 7, 4余る. このとき,整式P(z) を (x+1)(x-1)(x+2) でわったときの余 りを求めよ. (2)整式P(x) を (x+1)2でわった余りが2x+1, -1でわった余 りが1のとき, 整式P(z) を (x+1)2(x-1)でわった余りを求 めよ.

解決済み 回答数: 1
数学 高校生

2)、実数解が存在するための条件に関する質問です。 (1)で出てきた不等式が満たされればxが実数解を持つ。そのために不等式をyの関数とみて、yの最大値が0以上となるときの条件が、(*)をみたすxの存在条件になるのは分かってるつもりなんですが(簡単に言うとyも変数であるからだ... 続きを読む

54 第2章 複素数と方程式 標問 22 判別式 a b を実数の定数とするとき r'+y'+axy+b(x+y)+1=0 について考える. 以下の問いに答えよ. (*) α-2<0 より 求める条件は -462+4(a+2)≦0 すなわち J SE 55 MOORCONS ES 1% 0=8 +0+ (0) 62≧a+2 2次方程式 ax2+bx+c=0(a≠0) の解は x= -b±√b2-4ac 2a であり, a,b,cが実数のとき,D=62-4ac の符号により (2) 2<a<2 とする.(*)をみたす実数x, y が存在するための条件をα b (1) 実数y を固定したとき,についての2次方程式(*)が実数解をもつため の条件をα by を用いて表せ . 研究 (岐阜大) を用いて表せ. →精講 (1) について式を整理します . (*)は,実数係数の2次方程式ですか 解法のプロセス (1) 実数係数の2次方程式が実 数解をもつ ら 実数解をもつ (判別式) ≧ 0 が成り立ちます。 (2) (1)で実数が存在する条件をおさえてある ので、あとは実数y が存在する条件を求めます。 (1)で得た不等式を」についての2次関数のグラフ として考えるとよいでしょう. 条件 -2<a<2 はこのグラフが上に凸であることを示しています. <解答 (1)yは固定されている. (*)をæについて整理すると 2+(ay+b)x+y+ by + 1 = 0 ↓ (判別式) 0 (2) 2次関数f(y) のグラフが 上に凸であるとき f(y) ≧0 をみたす実数が 存在する ↓ f(y)=0 の (判別式) 0 判別式をDとおくと, (*)が実数解をもつための条件は, D≧0 である. D=(ay+b)2-4(y2 + by +1) より (a²-4)y°+26(a-2)y+62-4≧0 ......① (2) 2<a<2 のとき,不等式① をみたすyが存在するための a, b の条件を求 めればよい. f(y)=(a²-4)y2+2b(a-2)y +62-4 とおくと,-2<a<2であるから a-4<0 であり,f(y) のグラフは上に凸である. したがって,f(y)≧0 をみたす実数yが存在するための a,b の条件はf(y)=0の (判別式)≧0 である. b2(a-2)-(a2-4)(62-4)≥0 ..(a-2){62(a-2)-(a+2)(62-4)}0 ..(a-2){-462+4 (a+2)}≧0 D>0 ⇔ 異なる2つの実数解をもつ D=0 ⇔ 重解をもつ D<0 異なる2つの虚数解をもつ といった具合に解を判別することができる. a,b,c のいずれかが虚数のときは,判別式により, 重解であるか否かの 判別は 62-4ac = 0, 0 により可能であるが, 実数解をもつか否かの判別 はできない. 注意が必要である. 例えば, 虚数を係数にもつ2次方程式 x2-2ix-2=0 の判別式をDとおくと D MC =(-i)-(-2)=-1+2=1 (D≠0 より重解でないことが分かる) 判別式は正であるが, 解の公式より x=i±√1=i±1 であり,実数解をもたない.さらに, 方程式 2-(1+i)x+i = 0 である。 は 2-(1+i)x+i=(x-1)(x-i) と変形されるから x=1, i と 実数解と虚数解が共存する. 虚数を係数にもつ2次方程式については演習問題 30-130-2 も参照 せよ. 標問 109では3次方程式の判別式についても扱っている. + y 演習問題 A 22 整数とし, 2次方程式(k+7)'-2(k+4)x+2k=0 が異なる2つ (中京大) の実数解をもつとき,kの最小値および最大値を求めよ. 第2章

回答募集中 回答数: 0