学年

教科

質問の種類

数学 高校生

(2)のED:DFの問題が分かりません 解説よろしくお願いします🙇‍♀️

解答 基本 ((1) 例題 182 チェバの定理, メネラウスの定理 ( 1 ) 467 00000 1辺の長さが7の正三角形ABC がある。 辺AB, AC上にAD=3,AE=6 となるように2点D, E をとる。このとき, 線分 BE と CD の交点をF, 直線 AF と辺BC の交点をGとする。 線分 CG の長さを求めよ。 ( (2) △ABCにおいて,辺AB 上と辺 AC の延長上にそれぞれ点E,F をとり, 「AE: EB=1:2, AF:FC=3:1 とする。 直線 EF と直線 BCの交点をDと するとき, BD: DC, ED: DF をそれぞれ求めよ。 指針 図をかいて,チェバの定理, メネラウスの定理を適用する。 (1)3頂点からの直線が1点で交わるならチェバの定理 (2)三角形と直線1本で メネラウスの定理 B (1) AD=3,DB=7-3=4,AE=6,CE=7-6=1 △ABCにおいて, チェバの定理により BG CE AD =1 GC EA DB 駅やウ BG 13 すなわち =1 GC 64 BG -=8から BG=8GC GC よってCG=1/2BC=1/1 •7= り 79 B D ---- A -co- 3 -----6---- 7-----GC p.465 466 基本事項 3 3 ② B (2) (3) =1 (2) (3) E 3章 12 (2)△ABCと直線 EF について, A メネラウスの定理により E メネラウスの定理を用い るときは, 対象となる三 角形と直線を書く。 SoxneBD CF AE 2 =1 3 DC FA EB ③ C E BD 1 1 B D すなわち = 2 BD =6から DC (2)DC 3 BD: DC=6:1 △AEF と直線 BC について, メネラウスの定理により =1 F DC + OB ① ②② ED FC AB ED 13 F = 1 すなわち DF CA BE DF 2 200:08 ① ② 9.-1 ③ =1 ③ ED DF =1から ED: DF =4:3 に内分する点をD, 辺ACを4:3に内分する点 辺BCの交点をFと

回答募集中 回答数: 0
数学 高校生

至急お願いします🙇 数Iの範囲なのですが解説が載ってなくてどうしてこの答えになるかがわからないので解説お願いします🙇 問2全部です

22:57 1月28日 (火) PDF } ああ 今] 80% サムネールを表示 Ⅱ 以下の問いに答えなさい。 問1 kを0でない実数とする。 xの2次方程式 x2 (3k+7)x +5k = 0 と x2+ (3k-3)x -5k = 0 が共通の解をもつとき,kの値と共通解を求めなさい。 問2 下の図は, ある日のある時刻に, 直進する太陽光が建物 (図の長方形) によって遮られ, 地面に 影が出来ている様子を表す。 図において, 影と日向(ひなた)の境界である点Aと建物の壁の点 Bの距離は360√3cmであり, 太陽光と地面のなす角 (∠BAC) は30° である。 (1) この建物の高さを求めなさい。 (2) (1)において, 身長160cmの人が建物から離れたところに立っている。 ここで, 人を線分 XYで表し, 端点Xは頭部を表すとする。 夏の猛暑のため、この人は日陰に近寄ろうとして 地面に出来た建物の影の部分に立っているが, 頭部 X は太陽光に当たってしまっている。 この人の頭部が太陽光に当たらないようにするためには, 点Bから何cm以内まで近づけば よいか。 図を参考にして答えなさい。 A 人 X 30° 日向 A Y (ひなた) 日陰 B ............... 太陽光 建物

回答募集中 回答数: 0