学年

教科

質問の種類

数学 高校生

次の(2)の問題で青線から青線の移行がよくわからないのですがどなたか解説お願いします🙇‍♂️

例題 57 "" の値 ★★★ 1 1 (1)複素数zz+ √3 を満たすとき,290 + の値を求めよ。 Z 2.30 = 1 1 = {cos(±²² 7) + ¡sin(±²² 7)}”* + {cos(± 2/37) + isin (±²/7)}" 2n 2n 土 2n = cos( ± 21/17) + isin (± 2/2 7 ) + cos(+27) + isin (+237) (2) 複素数zz+ = 1 を満たすとき, w = z" + Z の値を求め z" = COS 2n 3 ±isin 2n 3 2n +cos π干isin 3 2n π 3 よ。 ただし, n は整数とする。 2n = 2 cos 思考プロセス (1)+(2+1) と考えるのは大変。 《ReAction 複素数の乗は、 極形式で表してド・モアブルの定理を用いよ 例題 55 具体的に考える 2+112=1/3より2-3z+1=0 ⇒ 極形式 2= 1 解 (1) z+ = √ √3より 2°-√3z+1=0 Z よって (複号同順) 3 (ア)n=3k(kは整数) のとき w=2cos (2kz)=2 (イ) n=3k+1 (kは整数) のとき w = 2cos(2kz+ 237) = 2 cos² = (ウ)n=3k+2 (kは整数) のとき w=2cos cos(2kz+ (ア)~(ウ)より, kを整数とすると 4 =-1 = 2 cos =-1 2 (n=3k のとき) √√(3) -4・1・1 2 = 3 土 2 2 1 i 2 = cos(土)+isin (+)(複号同順) このとき, ドモアブルの定理により 2 = {cos(+1) +isin(土)} 土 = cos(±5π) +isin (±5π) (複号同順) =-1 w= |-1 (n=3k+1,3k+2 のとき) 1 Point z+ 1 =kのときの " + の値 Z z" 1 複素数zが z+ = k ... ①(kは実数) を満たすとする。 2 ① より z-kz+1=0 この2解は互いに共役な複素数z, zであるから, 解と係数の関係 よって |z|2=1 すなわち |z|=1 ゆえに, z=cos+isind とおくと z"=cosn0+isinn0 したがって 1 1 ゆ = =-1 2.30 -1 2" + したがって 2.30 + 1 =-1-1=-2 (2)+1 =-1 より 2+z+1=0 2次方程式の解の公式を 用いてzの値を求める。 よって このことから,z+ はnの値に関わらず実数となることも分 2" =2"+(2")-1 = (cosnd+isinn)+(cosn0+isinn0)-1 = (cosnd+isinn)+(cosn0-isinn0) =2cosno 1 34 13 2 -1±√3i 2= 2 = + =cos (2) +isin (土) (複号同順) O このとき, ドモアブルの定理により 1 w = 2" + =z+zn 23 23 T x 1 練習 57 (1) 複素数zが z+ == 2 を満たすとき, 12 + 2 1 (2) 複素数zが z+- =√2 を満たすとき, w=z 2.

未解決 回答数: 1
数学 高校生

(1)(2)のどちらも絶対値を求めてから計算をはじめていますが、これは何を表しているんですか?

515 重要 例題 96 複素数の極形式 (2) 次の複素数を極形式で表せ。ただし、偏角010≦0<2πとする。 -cosa+isina (0 <α <π ) (2) sina+icosa (0≦x<2) 偏角の範囲を考える 0000 ・基本 95 既に極形式で表されているように見えるが,r(cos+isin) の形ではないから極形 指針 式ではない。 式の形に応じて 三角関数の公式を利用し, 極形式の形にする。 (1)実部の符号 - を + にする必要があるから, cos (π-0)=-cosA を利用。更に 虚部の偏角を実部の偏角に合わせるために, sin (π-0)=sin0 を利用する。 (2) 実部の sin を cos に, 虚部の cos を sin にする必要があるから, cos(7-0)=sinė, sin(7-0) 0 =cose を利用する。 2 また,本問では偏角 0 の範囲に指定があり, 002 を満たさなければならないこと 注意。 特に(2)では, αの値によって場合分けが必要となる。 CHART 極形式 (cos+isin) の形 三角関数の公式を利用 (1) 絶対値は (-cosa)+(sina)=1 -cosa+isina=cos(π-a)+isin (π-α) cos(-b)=-coso sin(0)=sin0 3章 1 複素数の極形式と乗法、除法 解答 また ① 0<<より,0<π-α <πであるから,①は求める極 形式である。 偏角の条件を満たすかど うか確認する。 (2) 絶対値は (sina)²+(cosa)² =1 058527 また ここで π sina+icosa=cos| cos(-a)+isin(-a) cos(-9)=sine Ome のときであるから,求め <2mから 2 る極形式は sinaticosa=cos | π a ゆえに, αの値の範囲に よって場合分け。 sin(-)-cos o π <<2のとき,偏 2 (-a)+isin(-a) π 3 <α <2のとき π 2 < -a<0 2 2 各辺に2を加えると、1/11/22であり、 52 -π 5 COS oly なお s(-a)= cos(-a), COS sin(-a)-sin(-a) よって, 求める極形式は sina+icosa cos(-a)+isin(-a) 角が0以上2 未満の範 囲に含まれていないから, 偏角に2m を加えて調整 する。 COS (+2nz)=COS sin(+2nx)=sin [n は整数] 練習 次の複素数を極形式で表せ。 ただし、偏角0 は 002 とする。 396 (1) cosa-isina (0<a<x) (2) sina-icosa (0≤a<2π) PP

未解決 回答数: 0
数学 高校生

数学Ⅱで質問です。 写真の問題の解答で、 [2]でm≠−1 をするのはどうしてか教えていただきたいです。お願いします。

26 第2章 複素数と方程式 CONNECT 5 方程式がただ1つの実数解をもつ条件 第 1 xの方程式 (m+1)x2+2(m-1)x+2m-5=0がただ1つの実数解をもつとき 定数の値を求めよ。 考え方 m+1=0 すなわち m =-1のとき, 与えられた方程式は1次方程式となり, だ1つの実数解をもつ。m=-1とmキー1で場合分けをする。 解答 (m+1)x2+2(m-1)x+2m-5=0 ...... ① とおく。 [1] m+1=0 すなわちm=1のとき 解と係数の関係 1 解と係数の関係 2次方程式 ax2+bx+c=0の2つの解をα,βと 2 2次式の因数分解 2次方程式 ax2+bx+c=0の2つの解をα,βと 3 2 数α,β解とする2次方程式 2数α, βを解とする2次方程式の1つは 方程式①は-4x-7=0となり, ただ1つの実数解 x=- -- 7 をもつ。 4 [2] m+1=0 すなわちmキー1のとき 方程式 ① は2次方程式となるから、①の判別式をDとすると D=(m-1)-(m+1)(2m-5)=-m²+m+6 =-(m+2)(m-3) ①がただ1つの実数解をもつのはD=0のときである。 -(m+2)(m-3)=0 よって これを解いて m=-2,3 これらはmキー1を満たす。 [1], [2] より, 求めるmの値は m=-2,-1,3 *04 の現 A 問 87 次の2次方程式について 2つの (1)x2+3x+2=0 *(3) 4x2+3x-9=0 *88 2次方程式 x²-2x+3=0の2 めよ。 (1)Q2+β2 (2) 303 (5)

未解決 回答数: 1