学年

教科

質問の種類

数学 高校生

3の2乗×2って何ですか??

346 基本 例題 (全体)でない)の考えの利用 00000 |大,中, 小3個のさいころを投げるとき, 目の積が4の倍数になる場合は何通り あるか。 [東京女子大] 指針目の積が4の倍数」を考える正攻法でいくと, 意外と面倒。 そこで (目の積が4の倍数)=(全体) (目の積が4の倍数でない) 基本 として考えると早い。 ここで, 目の積が4の倍数にならないのは,次の場合である。 [1] 目の積が奇数→3つの目がすべて奇数 [2] 目の積が偶数で, 4の倍数でない→ 偶数の目は2または6の1つだけで、4 2つは奇数 わざ (Aである) = (全体) (Aでない)の技活用 早道も考える CHART 場合の数 目の出る場合の数の総数は 6×6×6=216 (通り) 解答 目の積が4の倍数にならない場合には,次の場合がある。 [1] 目の積が奇数の場合 他の 積の法則 (63 と書いても よい。) 奇数どうしの積は奇数 基礎 500 て, いも 指 解答 3つの目がすべて奇数のときで 3×3×3=27 (通り) [2] 目の積が偶数で, 4の倍数でない場合 1つでも偶数があれば 積は偶数になる。 3つのうち、2つの目が奇数で、残りの1つは2または64が入るとダメ。 の目であるから (32×2)×3=54 (通り) [1], [2] から, 目の積が4の倍数にならない場合の数は 27+54=81 (通り) よって、目の積が4の倍数になる場合の数は 216-81=135 (通り) 和の法則 (全体) (……でない) 目の積が偶数で,4の倍数でない場合の考え方 上の解答の [2] は,次のようにして考えている。 大,中,小のさいころの出た目を (大, 中, 小) と表すと、3つの目の積が偶数で,4 にならない目の出方は、以下のような場合である。 (大,中,小) = (奇数 奇数 2 または 6 ) 3×3×2通り よって =(奇数,2または奇数

解決済み 回答数: 1
数学 高校生

数学的帰納法について質問です。 マーカー部分、なぜ急に不等式が出てきているのか、またマーカー部分は何より小さいのか全くわからないです。 解説していただきたいです。よろしくおねがいします。

準 nを3以上の自然数とするとき, 不等式 4"> 8n+1 CHART (A)を証明せよ。 すべての≧で成り立つことの証明 GUIDE HART [1] 出発点 n= のときを証明 生 [2]n=k(k≧) のときを仮定し, n=k+1のときを証明 本問では「n≧3 のとき」という条件であるから,まず,n=3のとき不等式が成り立つ ことを証明する。なお、n=k+1のとき示すべき不等式は 4'+'>8(k+1)+1である。 不等式A>B を示す代わりに A-B>0 を示す。 |答 [1] n=3のとき (左辺) =4=64, (右辺) =8・3+1=25 よって, n=3のとき, (A)が成り立つ。 [2] k≧3 として, n=k のとき (A) が成り立つ,すなわち 4k8k+1 川 <64>2503 「3」を忘れずに。 が成り立つと仮定する。 n=k+1のときの(A) の両辺の差を考えると 4+1_{8(k+1)+1}=4・4-(8k+9) 48+1)-(8k+9) =24k-5>0 ← k≧3から。 すなわち 4k+1 > 8(k+1)+1 よって, n=k+1 のときも (A) が成り立つ。 ◆ここで上の仮定 4>8k+1 を活用。 40 であるから 4>8k+1 ) の両辺に4を掛けても、 [1], [2] から, 3以上のすべての自然数nについて(A)が成り不等号の向きは変わらな 立つ。 Lecture 出発点を変えた数学的帰納法大 「nが自然数のとき」ではなく、 「n≧m のとき」のような, ある特定の数以上のすべての自 然数について成り立つことを証明するには,出発点を変えた数学的帰納法を利用する。 その手順 は、次の通りである。 の場合、例題 26 での数学的帰納法。 [1] n=m のときを示す。 ←m=1の場合が, [2]n=k(ただし, k≧m) のときを仮定して, n=k+1 のときを示す。 注意 上の例題で n=1, 2 のとき, 4”は順に4, 16, 8n+1は順に 9, 17であり, 4">8n+1 は成り立たない。よって,機械的に「n=1 のとき,不等式は成り立つ。」など と答案に書かないようにしよう。

解決済み 回答数: 1
数学 高校生

エオがわかりません。 解説で言ってる事がわかりません。 3枚目の方法で自分で解いてたのですが、計算がやばいことになってしまいこの式を解けば答えは求まるのですが共通テストなので時間がかかってしまうと思い別の方法がないかと解説を見たのですが、解説が何を言ってるのかがわからず、悩... 続きを読む

の前に、 第2問 (配点30) (ml) 10000.0 ((l) [1] ある店で商品の価格の変更を検討している。 次の売り上げ個数についての 定のもとで、できるだけ売り上げ総額が大きくなるように価格を決めたい。ただ 10000円 変更後の価格, 売り上げ個数は正の値をとる範囲で考えるものとする。また、 100 消費税は考えないものとする。 e 1502 草) 100.0 avee.0 8970.0 8180.0 sace.0 ST80.0 1201.0 208.0 81-01.0 89$1.0 asee.o ers1.0 売り上げ個数についての仮定 0008.0 は整数 kは正の定数とする。 8210 TTB6.0 01.0 8054.0 8180.0 x% 値上げすると、 売り上げ個数は kx % 減少する。 ただし、0の 2188.0. 80010 80 が 「kx % 減少する」 とは 「-k.x % 増加する」こととする。 き 「x% 値上げする」 とは, 「-x% 値下げする」 こととし, 売り上げ個数 8825 120 818.0 DAYS.O 18 T088.0 100.0 10882118 asser 02.0 0108.0 E8 CASE.O 1180.0 0008.0 8020 08810 8898.0 10-100 ENG.0 808.0 M assi.0 8000.0 0488.0 rese.0 3000000 18.0 1000 ×0.3 3000 TOON.O (1) 商品 A の現在の価格は1000円で、年間の売り上げ個数は3000個である。商 品 A の材料費が上昇しているため、値上げを考えている。すなわち、売り上げ 8001.0 9685.0 af£0.0 個数についての仮定においてx>0とする。また,過去のデータより,商品 A 2 4 ・31 13 についてはk = 1/3 であることがわかっている。 0188.0 1180.0 US88.0 72 4 Clae.0 AP Cual. ICET 8183.0 818.0 8180 ( 20000 8010 A 1300円 30× COTP.0 0000.0 -2008.0 00/3120000 BEG 3000000 ALL (200000 (1)商品 A について, 30% 値上げするとき, 売り上げ個数は アイ % 減少 ST28.0 ersa.0. 0200-24002 DANED 31200001800 BATO.0 18 8180.0 218.0 し, 売り上げ総額は ウ % 増加する。 また, 30% 値上げする以外に, 1184.0 2002.0 . 8188.0 エオ % 値上げするときも, 売り上げ総額は 2008.0 ウム % 増加する。 8008.0 1.0 Besa.o $180.0 sage.0 88 1088.0 0805.0 8818.0 8200.(0047 TO 988 1000×100 6038.0 TACT.0 1838.0 1 +3000 1002.0 ICAT.O 1938.0 商品 A の売り上げ総額が最大になるのは, asee.0 0000.0. ある。 GOOO.I カキ 値上げするときで 00 0000.1 IYOV.0 1505.0 a (数学Ⅰ 第2問は次ページに続く。)

解決済み 回答数: 1
数学 高校生

ケコのところです 解き方は理解して自分で解けたのですが、解説『3枚目の写真)でQLをxとおくと合ったのですが、なぜそこをxとしたのですか?APとAQがわかっててQLだけわからないからそうしたのですか? 当たり前のことを聞いてしまってたらすみません。 どなたかすみませんがよろ... 続きを読む

第1問 (配点 20) (全問答 ) 行されたマークして △ABCの辺BC上に点L, CA 上に点M, 辺 AB上に点Nをとり,ALとCNO 交点をF.ALとBM の文点を Q. BV と CN の交点をRとするとき、 えよ。 (1) 図1のような△ABCにおいて, 四角形 APRM, 四角形 BQPN, 四角形 CRQLO 三つの四角形がそれぞれ同時に円に内接する場合があるかどうか調べよう。 ウ ア の解答群 (同じものを繰り返し選んでもよい。) ZMAP ① ZRMA ② ZNBQ ③ ZPNB ZLCR ⑤ ZQLC より CMAD ∠NBQ ∠PRQ + ∠QPR + ∠PQR = 180° CLCR 四角形 APRM が円に内接するとき, 四角形 BQPN と四角形 CRQLの二つの四角 形が両方ともそれぞれ円に内接すると仮定すると、①〜③と ア + イ + ウ =180° として答えな であるが M ア + イ + ウ < ∠BAC + ∠ABC + ∠ACB = 180° より 答えてはいけません ア + イ + ウ < 180° ③ N P MATEM となり,④と⑤は矛盾する。 Q R したがって, 四角形 APRM が円に内接するとき, 四角形 BQPN と四角形 CRQL 10. B C の二つの四角形が両方ともそれぞれ円に内接する場合はないことがわかる。 L 図1 ∠PRQ=ア 0 四角形 APRM が円に内接するならば が成り立ち、四角形BQPN が円に内接するならば ∠QPRイ 2 が成り立ち、四角形 CRQL が円に内接するならば また, 四角形 APRM と四角形BQPNがそれぞれ円に内接するとき, ることがわかる。 I であ ② ∠PQR ウ 4 が成り立つ。 .. ③ ③ (数学A 第1問は次ページに続く。 I の解答群 O AB = AC ① AB=BC AB = AM ④AC = AN 2 AC = BC (5) AM = AN (数学A 第1問は次ページに続く。)

解決済み 回答数: 1
数学 高校生

組み合わせの問題です! 階乗でやる方法なかったですか? 解説お願いします

304 基本 例題 30 整数解の組の個数(重複組合せの利用) 00000 (1) x+y+z=7 を満たす負でない整数解の組 (x, y, z) は何個あるか。 (2) x+y+z=10 を満たす正の整数解の組 (x, y, z)は何個あるか CHART & THINKING 整数解の組の個数 ○と仕切りの活用 p.294 基本事項 基本-20 (1) 直接数え上げるのは大変である。 問題を読みかえて, x, y, zの異なる3個の文字から 重複を許して7個の文字を取り出すと考えよう。 すなわち 7個の○と2個の仕切りの 順列を考え、仕切りで分けられた3つの部分の○の個数を,左から順に x, y, zとする。 例えば 〇〇〇一〇〇一〇〇には (x, y, z)=(3, 2, 2) 一〇〇〇〇〇〇〇には (x, y, z)=(0, 2, 5) がそれぞれ対応する。 (2)x,y,zが正の整数であることに注意。 (1) の考え方では0となる場合も含むから x-1=X, y-1=Y, z-1=Z とおき, 0であってもよい X≧0, 0, Z≧0 の整数解の場合((1) と同じ)に帰着させ る。これは, 10 個の○のうち, まず1個ずつを x, y, zに割り振ってから, 残った7個の ○と2個の仕切りを並べることと同じである。 また,別解のように,10個の○と2個の仕切りを使う方法でも考えてみよう。 解答 (1) 求める整数解の組の個数は, 7個の○と2個のを1列 に並べる順列の総数と同じであるから ( 別解求める整数解の組の 個数は,3種類の文字 zから重複を許して7個 る組合せの総数に等しい ら3H7=3+7-1C7=9C7 =9C2=36 (1) X = 0, Y ≧ 0,Z≧0 C=C2=36(個) 合韻高 (2)x-1=X, y-1=Y, z-1=Z とおくと このとき,x+y+z=10 から (X+1)+(Y+1)+(Z+1)=10x=x+1, y=Y+l, 重要 例題 3 次の条件を満 (1) 0<a<b CHART & 大小関係が条 (1)条件を満た ら4個の数字 (2) (1) とは違 (2,2,2,2 それらの数 重複組合せ 別解として A=a, B= (a, b, c, (A, B, C. するから, 解答 (1)1,2, 小さい順 まる。 よって、 (2) 0, 1, 2 い順に よって、 よって A= 条件 0 7! よって X+Y+Z=7, X≧0, Y≧0,Z≧0 ...... A z=Z+1 を代入。 別解 求める正の整数解の組の個数は, A を満たす0以上の整数 解 X, Y, Zの組の個数に等しいから, (1) の結果より 36個 OC (別解 10個の○を並べる。 である。 よって、

解決済み 回答数: 1