学年

教科

質問の種類

数学 高校生

2番の計算がわかんないです

基礎問 (2) n を最大にするn を求めよ. 119 確率の最大値 白玉5個,赤玉n個の入っている袋がある。この袋の中から、 2個の玉を同時にとりだすとき, 白玉1個, 赤玉1個である確率 を pm で表すことにする.このとき,次の問いに答えよ。ただし、 n≧1 とする. (1) n を求めよ. (1) DnF (nt5) (n+4) 5D 2.5.n (n+5)(n+4) 10n (n+5)(n+4) n! ncy= r!(n-r)! Dn+1= (2) 10(n+1) (n+6)(n+5) × pn (n+5)(n+4) 10n +1の形で1と大 (n+1)(n+4) n(n+6) =1+ 4-n 小を比較 n(n+6) pn+1-1= 4-n pn n(n+6) <n(n+6)>0 だから よって, n<4のとき Dn+11 符号を調べるには分 Pn 子を調べればよい |精講 条件に文字定数々が入っていると、確率は”の値によって変化する ので、最大値が存在する可能性があります. 確率の最大値の求め方 は一般に,関数の最大値の求め方とは違う考え方をします.それは, 変数が自然数の値をとることと確率≧0であることが理由です. この考え方は、 パターンとして頭に入れておかなければなりません. n=4 のとき, Ds=ps n≧5のとき,n+1<1 pn : p₁<p2<p3<p4=p5> p6> p7>....... よって, n を最大にするnは 4,5 この式をかく方がわ かりやすい その考え方とは次のようなものです. いま, すべての自然数に対してp">0 のとき, ある自然数Nで, ポイント 確率の最大値は,わって1との大小比較 n≦N-1のとき Dn+1> >1 pn pn+1 n≧N のとき, <1 pn この考え方は確率以外でも ① 定義域が自然数 ② 値域>0 をみたす関数であれば利用できます。 たとえば,f(n)=1 n(n+3) が成りたてば, nで表されている確率は, 2" Þ₁<þ2<<þN> N+1>...... などです. この関数は n=2で最大になりま すので、各自やってみましょう. が成りたちます. だから n=Nで最大とわかります. すなわち, pn Dn+1 と1の大小を比較すればよいのです. ここで, 演習問題 119 Pn+1 >1Pn+1-pn>0 Pn ですから, Pn+1-0の大小を比較してもよいのですが、 確率の式という のは、ふつう積の形をしていますので,わった方が式が簡単になるのです. ある袋の中にn個の白玉が入っていて、そのうち5個に赤い印 がついている。その袋から, 5個の玉を同時にとりだしたとき,2 個の玉に赤い印がついている確率をpm とおく ただし, n≧8と する.このとき、次の問いに答えよ. するn を求めよ.

回答募集中 回答数: 0
数学 高校生

問題の下の解説の「x,yの2次式の因数分解」 のところで、展開をしなくていいのは、 展開した式を入れ替えても答えは同じっていう 性質があるからですか?

2 因数分解/2次式 つぎの式を因数分解せよ. (酪農学園大酪農, 環境) (北海学園大工) (東北学院大・文系) (1) (a-b+c-1) (a-1)-bc (2) 4.2-13zy+10y2 +18æ-27g+18 (3)(x+2y) (æ-y)+3y-1 因数分解では最低次の文字について整理する 2文字以上が現れる式の因数分解の原則は,最低次 その文字 (複数あるときはどれか1つの文字) について整理することである. 一般に,次数の低い式の方 が因数分解しやすい. 仕 解答 xyの2次式の因数分解 原則に従えば,xか」について整理するところであるが,(3)において (x+2y) (x-y) を展開して整理するのはソンである. 「x+2y」 「x-y」 を用いて解答のように「たす きがけ」をすればよい。 (2)も, x,yの2次式の部分を因数分解すれば同様にできる(別解) 慣習 因数分解せよ,という問題では,特に指示がない限り, 係数が有理数の範囲で因数分解する. (2) (3) ((+23)(x-3) + 33-17 (1) まずcについて整理することにより, 与式= {c(a-1)+(a-b-1) (a-1)}-bc ←与式はαについては2次だが, b やcについては1次. =(a-b-1)c+(a-b-1) (a-1)=(a-b-1)(a+c-1) (2) まずェについて整理することにより, (-a+b+1)(-a-c+Uod 与式=42-(13y-18)x + (10y2-27y+18) =4x²-(13y-18)x+(2y=3) (5y=6)... x= ={x-(2y-3)}{4m-(5y-6)} 2 × ①+56 7-2 →27 ←1 -(2y-3) × -(13y-18) =(x-2y+3)(4x-5y+6) 14 -(5y-6) 注 ① におけるたすきがけで, 試行錯誤するのを避けるためには, ①= {ar-(2y-3)}{bx-(5y-6)} とおき, 展開して係数比較すればよい. æの係数は (yは定数と見る), -{(5a+26)y- (6α+36)} となり, ー (13y-18) と一致するので 5α+26=13,6a+36=18. これを解いて α= 1, 6=4となる. (3) 与式={(x+2y)-1}{(x-y)+1} てんか =(x+2y-1)(x-y+1) 【別解】 (2) [x,yの2次式の部分をまず因数分解して, (3) と同様に解くと] であるから, 4.2-13ry+10y2=(x-2y) (4π-5y) 与式= (x-2y) (4-5y) + (18-27y) +18 このときの係数も一致する. x+2yx-13y x-y →-13 12--13 0 4 -5 ={(x-2y)+3}{(4x-5y)+6} =(x-2y+3)(4x-5y+6) 2 演習題(解答はp.22) (1) (ry) (x+y-z (z+2y) を因数分解せよ. (2) 3a+26+αb +6 を因数分解すると d)( x-2y 3 4x-5y 6 × -18x-27y 13) (48 (北海道薬大) である.また, (1) である. (3)は,例題 (2) と同様 (岐阜聖徳学園大) に2通りのやり方があ (静岡産大) . ry+xz+y2+yz+3 +5y+2z+6 を因数分解すると (3) 8-18y2+10x+21y-3 を因数分解せよ.

回答募集中 回答数: 0
数学 高校生

(2)で(1)の不等式をどう生かしたのか、 解説の一連の不等式の流れがよくわかりません。

14 不等式の証明/拡張した形 (ア) (1) yが実数のとき, 2 (2) a, b, c が実数のとき, x+y\2 であることを証明せよ. であることを証明せよ。 a²+26² + c² = (a+b+c)². (イ) (1) ||<1, y|<1のとき, zy+1>æ+yを証明しなさい。 (立命館大文系) (2)また,(1)を用いて,|x|<1,|y|<1,|z|<1のとき,ry+2+y+zを証明しなさい。 (1)を活用する (岐阜経済大) (2) が (1) を拡張したような形の式を証明するときは (1) を利用して(2)を示 すことをまず考えよう. 本間 (ア)の場合,226262(イ)の場合, zyz(ry)zとして,(1)に結び つける. 2+2btc 解答 4 2 (ア) (1) (左辺) (右辺)= = {2(x²+ y²)-(x+y)²)=(xy)²≥0 1/2++ 46+20) となるから, 証明された. (2) (1)の不等式を用いると, b2+c2 (左辺)= ・+ 2 2 2 1)= 1½ (a² + b² + b² + c² ) = {(a+b)² + (b+c)"} (1)の不等式は, 02+02 0+2 2 2 ということ. a+b b+c + なお, (2) は, 平方完成で直接 a+b 2 2 a+2b+c I= y= 2 4 2' (1)を利用 (イ) (1) (左辺) - (右辺) =ry-x-y+1 =(x-1)(y-10 (x < 1, y<1だから) 示すこともできる。 16 { (左辺) (右辺)} =4(α2+262+c2)-(a+2b+c)2 =3a2+462+3c2 --4ab-4bc-2ca =462-4(a+c) b b+cとして 2 となるから, 証明された. +3a2-2ac+3c2 (2) w=xyとおくと, |x| <1,|y|<1により, |w|<1である。 よって, =4(6-a+c)²+ +2(a-c)2≥O 2 (1)を用いると,wz+1>w+z :.xyz +1>xy+z 各辺に1を加え, yz+2> (xy+1)+z 右辺に (1) を使い, ryz+2>(xy+1)+z>(x+y+z となるから, 証明された. 14 演習題 (解答はp.29) (ア) p. 9. rをいずれも正数とする. (1) XY-X-Y +1 を因数分解しなさい。 HENDER BIG (2)2+2-22-1の大小を比較しなさい . (3)2 +2 +2'320+9+r-1の大小を比較しなさい。 (イ) 次の(1),(2) を証明せよ. (龍谷大文系) (1)とき I y 1+x 1+y (2) すべての実数a,bについて, la+bl 1+a+b |a|+|6| 1+|a|+|6| (岐阜聖徳学園大) (ア) (3)では、 2D+g+r=2(D+q)+ と見る。 (イ)一般に. |a|+|0|≧|a+01 が成り立つ。 21

回答募集中 回答数: 0
数学 高校生

この二問、問題の解き方と答えを教えてください。 明日テストなんですけど、それまでに教えてください!!

演習問題 日本とイギリスとの統治制度の違いを比較した次の記述 A~Dのうち適当なものを二つ選び、その 一組合せとして最も適当なものを,下の①~⑥のうちから一つ選べ。 A 日本では,首相が国会議員の中から国会の議決で指名されるが, イギリスでは,首相が国民の直接 選挙で選ばれる首相公選制を採用している。 B 日本は 「日本国憲法」 という成文の憲法典を持つが、イギリスは「連合王国憲法」というような国 としての憲法典を持たない。 C 日本では,通常裁判所が違憲立法審査権を行使するが, イギリスでは, 通常裁判所とは別個に設け られた憲法裁判所が違憲立法審査権を行使する。 D 日本の参議院は, 選挙により一般国民の中から議員が選ばれるが,イギリスの上院は, 貴族身分を 有する者により構成されている。 ① AとB ② AとC ③ AとD ④ BとC ⑤ BとD ⑥ CとD 2004年センター試験政治・経済 本試〉 以下の 「民主主義とは何か」の意見を元に生徒2人が議論をした。 W ア~エの記述が一つずつ, 一回だけ入る。 生徒Aの発言である 組合せとして最も適当なものを、下の①~⑥のうちから一つ選べ。 ただし、 てはまる記述の順序は問わないものとする。 W Z にはそれぞれ . Z に当てはまる記述の W Z に当 ●国政の重要な事項は国民全員に関わるものであるが,主権者である国民が決めるのであれ, 国民の 代表者が決めるのであれ、全員の意見が一致することはありえないのだから, 過半数の賛成によっ て決めるのが民主主義だ。 生徒A: 議会では, 議決を行う前に, 少数意見を尊重しながら十分に議論を行わなければいけないと 思うよ。 生徒B: でもちゃんと多数決で決めるのだから, 時間をかけて議論をしなくてもよいと思うなあ。 なぜ議論をしないといけないの? 生徒A: それは, W からじゃないかな。 生徒B : いや, X。それに Y 生徒A: 仮にそうだとしても、 Z それに、議論を尽くす中で,最終的な決定の理由が明らか 。 になり、記録に残すことで, 後からその決定の正しさを振り返ることができるんじゃないか な。 ア 時間をかけて議論をすることで人々の意見が変わる可能性がある イ決定すべき事項の中には、人種、信条、性別などによって根本的に意見の異なるものがある ウ 少数意見をもつ人たちも自分たちの意見を聴いてもらえたと感じたら, 最終的な決定を受け入れや すくなる エ 時間をかけて議論をしても人々の意見は変わらない ①アとイ ②アとウ ③アとエ ④ イとウ ⑤ イとエ ⑥ ウとエ 2018年大学入学共通テスト試行調査 政治経済〉 第5章 民主国家における基本原理 43

回答募集中 回答数: 0
数学 高校生

infomationの2行目の式がなぜ2直線の交点を通る直線を表していると言えるのですか?

らず 基本18 ...... 基本 例題 78 2直線の交点を通る直線 2直線 2x+3y=7 直線の方程式を求めよ。 ・①, 4x+11y=19 123 000 ② の交点と点 (54) を通 Ip.115 基本事項 5. 基本 77 ―係数比較送) 一数値代入法 線の式が成立 よう。 CHART SOLUTION 2直線 f(x,y)=0,g(x,y)=0 の交点を通る直線 方程式 kf(x,y)+g(x,y)=0 (kは定数)を考える x, yで表される式を f(x, y) などと表す。 問題の条件は2つある。 [1] 2直線 ①,②の交点を通る [2] 点 (54) を通る そこで,まず,①,②の交点を通る直線(条件[1]) を考え,次に,この直線が点 (54) を通る (条件 [2]) ようにする。 3章 直線 比較法 -g=0がんの ⇒f=0,g=1 この基本例題 るように --4y=0, 1=0 の交点を すから、これ 三点が定点A =入法 当な値を代入 係数を0にす してもよい。 件の確認。 うらず 解答 kを定数とするとき, 次の方程式 ③は,2直線 ①,②の交点を通 る直線を表す。 (2x+3y-7)+(4x+11y-19) =0 ...... ③ ③が,点 (54) を通るとすると, ③に x=5,y=4 を代入して 15k+45= 0 よって (1) 11 19 11 0 73 k=-3 |-7|2 (2,1) 別解 2直線 ①,② の交点 の座標は (5, 4) よって, 2点 (21), (54) を通る直線の方程式は 19-1=4-12(x-2) 4 すなわち x-y-1=0 これを③ に代入すると-3(2x+3y-7)+(4x+11y-19)=0 整理すると x-y-1=0 INFORMATION 2直線の交点を通る直線 交わる2直線 ax+by+c=0,ax+by+c2=0に対して kax+by+c)+azx+bzy+c2=0 (kは定数)..... (*) は,kの値にかかわらず2直線の交点を通る直線を表している。 (ただし,直線 ax+by+c=0 は除く。) 2直線の交点(x,y) は,ax+by+c=0, azx+by+c2=0 を同時に満たす点であ るから,(*)はんの値にかかわらず成り立つ。 すなわち, (*)は2直線の交点を必ず 通る直線になる。 この考え方は直線以外の図形を表す場合にも通用するので,応用範囲が広い。 PRACTICE... 78 ③ 次の直線の方程式を求めよ。 (1) 2直線x+y-4=0, 2x-y+1=0 の交点と点 (-2, 1) を通る直線 (2) 2直線 x-2y+2=0, x+2y-3=0 の交点を通り,直線 5x+4y+7=0 に垂直 な直線

回答募集中 回答数: 0
数学 高校生

解答の場合分けがこのようになっている理由がわからないです。なぜ1で分けているのか教えて頂きたいです。

回転 36 xy 平面上の2次曲線を 9x2+2√3xy+7y2 = 60 とする.このとき,次の各問いに答えよ. 215-36 と曲線 C は、原点の周りに角度0(001)だけ回転すると, ax2+by2 = 1 の形になる.0 と定数a, b の値を求めよ. (2) 曲線C上の点と点 (c, -√3c) との距離の最小値が2であると き,c の値を求めよ.ただし, c0 とする. アプローチ 〔神戸大〕 (イ)曲線を回転させようと考えるのではありません。曲線上の点を回転さ せて回転後の点の軌跡を求める感覚です. そこで曲線 C上の点を (x, y), これを回転した点を (X, Y) とし,x,yの関係式から x, y を消去して, X, Y の満たすべき関係式を求めると考えます.つまり x, y を X, Y で表 してC の式に代入するというストーリーです。そのためには (X, Y) = 「(x, y) を 0 回転した点」 という関係式ではなく (x, y) = 「(X, Y) を -0 回転した点」 という関係式を立式しましょう。これをC の式に代入したら出来上がり です. (口)点(x, y) を原点を中心に角 0 だけ回転した点を (X, Y) とすると, X + Yi = (cos 0 +isin0)(x + yi) です.実部と虚部を比較すると となります. X = x cos 0 - y sin 0, Y = xsin0 + y cos 0 (2)では曲線 C 上の点と (c, -√3c)との距離を考えるのではなく,とも に回転させた曲線と点との距離を考えます.

回答募集中 回答数: 0