学年

教科

質問の種類

数学 高校生

赤く印をつけたところが分かりません。 どなたか解説お願いします🤲

442 重要 例題 131 N” の一の位の数 散料 (1) 182020 10進法で表すとき,一の位の数字を求めよ。 (2) 1718 を5進法で表すとき,一の位の数字を求めよ。 CHART O 解答 OLUTION N” (N, n は自然数)の一の位の数 一の位の数字のサイクルを見つける ・・・・・・ (1)18の一の位の数字8 に着目して 8×8=64 から 182 の一の位の数字は 4 更に 4×8=32,2×8=16,6×8=48 よって、18” の一の位の数字は 8 4 2 6 の繰り返しになる。 00000 基本128 (2)(1) と同様に考えて,まず 1718 を 10 進法で表したときの一の位の数字を求め る。それをαとすると 178 10A+α (Aは正の整数)と表される。 104を5 進法で表すと一の位の数字は 0 であるから, αを5進法で表したときの一の位 の数字が求める数字になる。 (1)8×8=64,4×8=32, 2×8=16,6×8=48 であるから, 18 口を10進法で表したときの一の位の数字は、4つの数 8, 4, 2, 6 の繰り返しとなる。 ここで 2020=4・505 であるから, 182020 の一の位の数字は 6 である。 (2)7×7=49,9×7=63, 3×7=21, 1×7=7 であるから, 17 を 10 進法で表したときの一の位の数字は, 4つの数 7, 9, 3, の繰り返しとなる。 1 ここで 18=4・4+2 であるから, 1718 を10進法で表したとき の一の位の数字は9である。 このとき 1718=10A+9 (Aは正の整数) と表され, 10A を 5進法で表すと,一の位の数字は 0 である。 したがって, 求める数字は9を5進法で表したときの一の位 の数字であるから, 9=5'+4 により 4 2020 を4で割ると余り は 0 よって,4つの数字 8, 426の4番目が一の 位の数字。 10A を5で割ると割り 切れるから、余りは 0 9は5進法で 14(5) ()sia-s

未解決 回答数: 1
数学 高校生

(2)に対してなのですが、模範解答の指針とは別に、接戦を(a.b)と置き、その点における接戦として(a-1)(x-1)+(b-1)(x-1)=r^2、整理して、 (a-1)x+(b-1)y+(-a-5b-r^2+26)=0という式になって、 これが直線4x-3y+1=0と一... 続きを読む

基礎問 66 第3章 図形と式 41 円と接線 Q(1) 次の接線の方程式を求めよ. (ア) (1,2) において,円x2+y2 = 5 に接する (イ) (1,3) から円 '+y'=5に引いた接線 △ (2) 点 (15) を中心とし, 直線 4.x-3y+1=0 に接する円の方 程式を求めよ. 精講 (1) 次のような公式があります。 円x2+y2=2 上の点 (xo,yo) における接線は xox+yoy=r² たいへん便利なように見えますが, この公式を用いるときには「接点の座標」 がわかっていなければなりません. すなわち, (1) の(ア) と(イ)の違いがわかってい るかどうかがポイントです . 解答 (12) 接点だから, x+2y=5 (イ)(解Ⅰ) 接点を (Z1, y1) とおくと, mi2+y²=5... ① このとき, 接線は+yy=5 とおけて この直線上に点 (1,3) があるので, 1+3y1=5② ① ② より (5-3y₁)²+y₁²=5 ..10y²²-30y+20=0 ∴.y=1,2 ②より, y=1のとき m=2 i=2 のとき =-1 よって, 接線は2本あり, ∴. (y-1)(y-2)=0 <ポイント 2x+y=5 と x+2y=5 ( 解ⅡI) (接点の座標をきいていないので・・・・・・) (13) を通る x²+y² = 5 の接線はy軸と平行ではないので (注 y-3=m(x-1), すなわち, mx-y-m+3=0 とおける. この直線が2+y²=5 に接するので =√5 |-m+3| √m² +1 ... | m-3|=√5(m²+1) 両辺を平方して,5m²+5=m²-6m+9 .. 4m²+6m-4=0 .. (2m-1)(m+2)=0 =1/12-2 2' よって,接線は2本あり, 5 y = -1/2 x + m= r= 演習問題 41 2 (2) 半径をrとおくと |4-15+1| √42+(-3)2 よって, 求める円の方程式は (x-1)2+(y-5)2=4 ポイント と y=-2x+5 注 タテ型 (y軸に平行) 直線の可能性があるとき, 傾きmを用いて 直線を表すことはできません. -=2 140 40 (1,5) ⅡI. 点と直線の距離の公式を使う ⅢII. 判別式を使う 4x-3y+1=0 67 円の接線の求め方 I. 円 (x-a)+(y-b)2=r2 上の点 (x1, yì) におけ る接線は (x₁-a)(x-a)+(y₁−b)(y-b)=r² 点 (42) から円r'+y2=10に引いた接線の方程式を求めよ.

未解決 回答数: 1
数学 高校生

この⑵で、三角形の重心と、Pを通る直線を求めようとしたのですが、模範解答はその解き方ではないですが、わたしの解き方でも答えはでますよね?? でも解いてみると、2枚目の写真のようになって答えと違ってしまうんですけど、どこかで計算ミスしてるだけですかね、?

は、たの値に関係な ついての 恒等式 整理する。 ■3x+y-3=0 の交点を 恒等式と考える 係数比較法。 んについての恒等 る。 kA+B=0がんにつ ての恒等式 ⇔A=0, B=0 点の候補を求め、 それた なお、代入する YA めよ。 -2k=0 0 」,「対 83 直線と面積の等分 重要 3点A(6,13), B(1, 2), C(9, 10) を頂点とする △ABC について (2) 辺BCを1:3に内分する点Pを通り, △ABCの面積を2等分する直線の (1) 点Aを通り, △ABCの面積を2等分する直線の方程式を求めよ。 方程式を求めよ。 基本 75.78 指針 解答 大 (1) 三角形の面積比 等高なら底辺の比であるから 求める直線は, 辺BC を同じ比に分ける点, すなわち辺BCの中点を通る。 (2) 求める直線は, 点Pが辺BCの中点より左にあるから, 辺ACと交わる。 この交点をQとすると 等角→挟む辺の積の比(数学A: 図形の性質) 1 CP+CQ により CB・CA 2 これから、点Qの位置がわかる。 各/1+9 合 (1) 求める直線は,辺BCの中点 を通る。 この中点をMとする と、その座標は ACPQ △ABC 2+10 2' 2 y-13= 自由標は すなわち (5, 6) よって 求める直線の方程式は (x-6) HAGENT = 6-13 5-6 y=7x-29 ya ( 3・1+1・9 1+3 0 A(6, 13) P B(1,2) 3.2+1 10 1+3 3 したがって (2) 点Pの座標は すなわち (3,4) 辺AC上に点Qをとると、直線PQ が △ABCの面積を 2等分するための条件は ACPQ CP:CQ 3CQ 1 △ABC CB・CA 4CA 2 -Q C(9, 10) ・M x B ゆえに CQ:CA=2:3 よって, 点Qは辺 CA を2:1に内分するから, その座 /1.9+2.6 1.10+2.13 2+1 2+1 すなわち (7, 12) したがって,2点P Q を通る直線の方程式を求めると y-4= 12-4 7-3 (x-3) すなわち y=2x-2 M 8 ABS ( △ABMと△ACMの高 さは等しい。 135 <異なる2点(x1, yi), (x2, y2) を通る直線の方 程式は y-y=21(x-x) X2-X1 から <AABC= =12CA-CBsin C, ACPQ=CP-CQ sin C 3章 ACPQ CP-CQ △ABC CB・CA また BC: PC=4:3 一直線の方程式、2直線の関係 喫 3点 A (20,24), B(-4,-3), C(10, 4) を頂点とする △ABC について、辺BC を 883 2:5に内分する点Pを通り, ABCの面積を2等分する直線の方程式を求めよ。 p.140 EX 56

回答募集中 回答数: 0