学年

教科

質問の種類

数学 高校生

三角形OACの高さについてです。 オレンジ色で波線が書いてあるところがわかりません。 なぜ2sinθ=-sin(120°-θ)ではないのですか。

から また、0<x2a<πであるから 数学Ⅱ 153 << 2 えに、<cosa <1の範囲において、Rはcosa= のとき最大値 2/23 をとる。 ←y< 1 X3 58 2 すなわち a= ←△ABC は正三角形。 <y-x<2 200 72 <y-x < 0 2 練習 162 0を原点とする座標平面上に点A(-3, 0) をとり, 0°0 <120°の範囲にある0に対して,次の 条件(a), (b) を満たす2点 B, Cを考える。 a) Bはy>0の部分にあり, OB=2かつくAOB=180°-0である。 (b)Cy<0の部分にあり,OC=1かつくBOC=120°である。 ただし, △ABCは0を含 むものとする。 (1) AOAB と AOACの面積が等しいとき、0の値を求めよ。 20°<<120°の範囲で動かすとき,△OAB と AOACの面積の和の最大値と,そのとき のsin0 の値を求めよ。 △OAB と △OAC はOA を共 有するから,OAB と AOACの 面積が等しいとき,それぞれの高さ が等しい。 ここで,条件から,動径 OBとx軸の正の向きとのなす角は 180°(180°-0)=0 △OAB の高さは 2 sin 0 2sin=sin(120°-Q)... √3 y B A 180°-6 A x -3 0 120° C △OACの高さは sin(120°-0) ゆえに 1 よって 2sin0= cos 0+ 0+1/2 sin 2 ゆえに 3 sin 0=√3 cos 0 8=90° は ① を満たさないから 0=90° ②の両辺を cose で割って tan0= √3 0°<< 120° であるから 0=30° 〔東京大〕 ←OBsin0 [ ←OCsin (120°-0) X3 (1) E8 ←①の右辺に加法定理 を用いた。 ←6=90° を ① に代入す ると 2sin90°=sin30° これは不合理。 803 4章 練習 章 [三角関数] [同志社大 ] 弐。 給 から, 定。 (2) AOAB と AOACの面積の和をSとすると √√3 S=-3(2 sin0+ cos 0+ =3.2/7 2 -coso+ 1/23sine) = 2424 (5sino+√3 cose) ・2√7 sin(0+α)=3√7 -sin (0+α) 2 ただしsina= √21 5√7 COS α= (0°<a<90°) " 14 14 ① 0°0<120°0°<α <90° より、0°<0+α<210° であるから, この範囲において, Sは0+α=90° のとき最大となり,そのes osa 最大値は 3√7 -sin90°= ..1= 37370 2 2 2 また、+α=90°のとき 5√7 sin=sin(90°-α)=cosa= 140-D >820 -Qua ←三角関数の合成。 の値を具体的に求め られないときは左のよ うな「ただし書きを忘 れないように。 miaa

未解決 回答数: 2
数学 高校生

(1)の数列bnの式で、なぜ(n-1)をかけるかわかりません。 (1)、(2)どちらも数列bnの式の求め方がわかりません(bn=an+1-anまではわかる)教えて欲しいです🙇🏻‍♀️

380 基本 例題 19 階差数列と一般項 次の数列{a} の一般項 αn を求めよ。 (1)8, 15, 24, 35, 48, (2) 5, 7, 11, 19, 35, CHART & SOLUTION {a} の一般項 (bn=an+1-an とする) わからなければ,階差数列 {bm} を調べる p.375 基本事項.Gha n-1 n≧2のときabk k=1 ← 初項 (n=1の場合) は特別扱い。 解答で公式を使うときは n≧2 を忘れないように。 また, n=1 ように! (1) 階差数列は 7, 9, 11, 13, 公差2の等差数列 (2)階差数列は 2, 4, 8, 16, 公比2の等比数列 解答 その場合の確認を忘れ 数列 {an} の階差数列を {bm} とする。 (1) 数列{bm} は, 7, 9, 11, 13, 公差2の等差数列である。 ・・であるから, 初項 7, 8 15 24 35 差 : 791113 ゆえに bn=7+(n-1)・2=2n+5 よって, n≧2のとき n-1 k=1 an=a1+(2k+5)=8+2k+5 5)=8+2 n-1 n-1 k=1 k=1 (+) =8+2・ 1/12(n-1)n+5(n-1)=n²+4n+3 また,初項は α = 8 であるから,上の式は n=1のとき ☆ 「n≧2 のとき」とい 条件を忘れないよう k=(n-1)- -1 k=1 2 初項(n=1の場合: 特別扱い。 にも成り立つ。 以上により, 一般項 an は an=n2+4n+3 (2) 数列{bm} は, 2, 4, 8, 16, 比2の等比数列である。 ゆえに よって, n≧2 のとき であるから, 初項 2, 公 bn=2.2"-1=2" 5 7 11 19 35 WW 差 : 2 4 8 16 ← n≧2のとき」とい n-1 an=1+2=5+ 2(21-1-1) 条件を忘れないよう -=2"+3 k=1 2-1 また,初項は α = 5 であるから,上の式は n=1のとき ←初項(n=1の場合 にも成り立つ。 以上により,一般項an は an=2"+3 特別扱い。 基 C

未解決 回答数: 1